Cos, it's deceiving

Calculus Level 5

I = 0 π 2 cos ( 8 x ) cos ( 7 x ) 1 + 2 cos ( 5 x ) d x \large I = \int_0^{\frac{\pi }{2}} \frac{\cos (8x) - \cos (7x)}{1 + 2 \cos (5x) } \text{ d}x

Evaulate 15 I \displaystyle 15I .


The answer is -5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karthik Kannan
Jul 6, 2015

Using the identity

cos C cos D = 2 sin C + D 2 sin D C 2 \cos C-\cos D=2\sin\dfrac{C+D}{2}\sin \dfrac{D-C}{2}

The numerator simplifies to 2 sin ( 15 x / 2 ) sin ( x / 2 ) -2\sin(15x/2)\sin(x/2) .

Using the identity

sin 3 θ sin θ = 1 + 2 cos 2 θ \dfrac{\sin 3\theta}{\sin\theta}=1+2\cos 2\theta

and putting θ = 5 x / 2 \theta=5x/2 the denominator simplifies to sin ( 15 x / 2 ) sin ( 5 x / 2 ) \dfrac{\sin (15x/2)}{\sin(5x/2)} .

Thus the integral becomes

0 π / 2 cos 3 x cos 2 x d x \displaystyle\int_{0}^{\pi/2} \cos 3x-\cos 2x\text{ }\text{d}x

(after applying the first identity a second time) which evaluates to 1 3 \boxed{\dfrac{-1}{3}}

Perfect. Thanks. Upvoted.

Sudeep Salgia - 5 years, 11 months ago

Will remember that identity for sure :)

Krishna Sharma - 5 years, 11 months ago

@Karthik Kannan Really nice solution and thanks for that identity. It's really useful! @Sudeep Salgia Nice problem Sir!

User 123 - 5 years, 10 months ago

Oh, nice solution. I just hate geometry. I did the complex way. Much easier to think of(at least for me).

Kartik Sharma - 5 years, 10 months ago

LOL....one of the few calculus problems I managed to solve. Real confidence booster man.....

Noel Lo - 5 years, 10 months ago
Sudeep Salgia
Jul 6, 2015

Well, I don't know a simpler solution than this.It would be nice if I could get one.

I = 0 π 2 cos ( 8 x ) cos ( 7 x ) 1 + 2 cos ( 5 x ) d x = 0 π 2 ( cos ( 8 x ) + cos ( 2 x ) ) ( cos ( 7 x ) + cos ( 3 x ) ) + ( cos ( 3 x ) cos ( 2 x ) ) 1 + 2 cos ( 5 x ) d x = 0 π 2 2 cos ( 5 x ) cos ( 3 x ) 2 cos ( 5 x ) cos ( 2 x ) + ( cos ( 3 x ) cos ( 2 x ) ) 1 + 2 cos ( 5 x ) d x = 0 π 2 ( cos ( 3 x ) cos ( 2 x ) ) ( 1 + 2 cos ( 5 x ) ) 1 + 2 cos ( 5 x ) d x = 0 π 2 cos ( 3 x ) cos ( 2 x ) d x = [ sin ( 3 x ) 3 sin ( 2 x ) 2 ] 0 π 2 = 1 3 \displaystyle \begin{array}{c}\\ I && = \int_0^{\frac{\pi }{2}} \frac{\cos (8x) - \cos (7x)}{1 + 2 \cos (5x) } \text{ d}x \\ && = \int_0^{\frac{\pi }{2}} \frac{\left( \cos (8x) + \cos (2x)\right) - \left( \cos (7x) + \cos(3x) \right) + \left( \cos(3x) - \cos(2x) \right)}{1 + 2 \cos (5x) } \text{ d}x \\ && = \int_0^{\frac{\pi }{2}} \frac{2 \cos (5x) \cos (3x) - 2 \cos (5x) \cos (2x) + \left( \cos(3x) - \cos(2x) \right) }{1 + 2 \cos (5x) } \text{ d}x \\ && = \int_0^{\frac{\pi }{2}} \frac{\left( \cos(3x) - \cos(2x) \right) \left( 1 + 2 \cos(5x) \right)}{ 1 + 2 \cos (5x) } \text{ d}x \\ && = \int_0^{\frac{\pi }{2}} \cos (3x) - \cos (2x) \text{ d}x \\ && = \left[ \frac{ \sin (3x) }{3} - \frac{ \sin (2x) }{2} \right]_0^{\frac{\pi }{2}} \\ && = \frac{-1}{3} \\ \end{array}

15 I = 5 \displaystyle \therefore 15I = \boxed{ -5 }

Nice, I did by multiplying and Dividing by 2sin(5x) which was lengthier than your solution.

Krishna Sharma - 5 years, 11 months ago

I wrote the numerator as

2 sin ( 15 x / 2 ) sin ( x / 2 ) -2\sin(15x/2)\sin(x/2)

For the denominator I used the following identity

sin 3 θ sin θ = 1 + 2 cos 2 θ \dfrac{\sin 3\theta}{\sin\theta}=1+2\cos 2\theta

Putting θ = 5 x / 2 \theta=5x/2 we get the denominator.

This approach is reasonably quick.

Karthik Kannan - 5 years, 11 months ago

Log in to reply

POST SOLUTION! POST SOLUTION! POST SOLUTION! POST SOLUTION!

Pi Han Goh - 5 years, 11 months ago

Log in to reply

I have posted one ¨ \ddot\smile .

Karthik Kannan - 5 years, 11 months ago

I will be honest, I solved it like how you did and got it right. Great Job!!!

Lew Sterling Jr - 5 years, 11 months ago

Funnily this was asked in CBSE Pre-boards conducted in our school. ¨ \ddot \smile

Vishwak Srinivasan - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...