Cos complexity?

Geometry Level 3

cos ( i ) = ? \large \cos(i ) = \, ?

Approximate your answer to 3 decimal places

If you think the answer cannot be determined, enter 666.

Clarification : i = 1 i=\sqrt{-1} .


The answer is 1.543.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sparsh Sarode
May 30, 2016

e i x = cos x + i sin x e^{ix}=\text{cos}x+i\text{sin}x

Put, x = i x=i

e i 2 = cos ( i ) + i sin ( i ) e^{i^2}=\text{cos}(i)+i\text{sin}(i)

e 1 = cos ( i ) + i sin ( i ) e^{-1}=\text{cos}(i)+i\text{sin}(i) \rightarrow 1

Put, x = i x=-i

e i 2 = cos ( i ) + sin ( i ) e^{-i^2}=\text{cos}(-i)+\text{sin}(-i)

Since, cosine is an even function, cos ( i ) = cos i \text{cos}(-i)=\text{cos}i

e = cos ( i ) i sin ( i ) e=\text{cos}(i)-i\text{sin}(i) \rightarrow 2

Adding 1 and 2 , and dividing by 2,

c o s ( i ) = e 1 + e 2 1.54308 \large \ \boxed{ cos(i)=\dfrac{e^{-1}+e}{2}≈1.54308}

Chew-Seong Cheong
May 30, 2016

Using the following identity of cos z \cos z , where z z is a complex number, we have:

cos z = e i z + e i z 2 Putting z = i cos i = e i 2 + e i 2 2 = e 1 + e 1 2 1.543 \begin{aligned} \cos \color{#3D99F6}{z} & = \frac{e^{i\color{#3D99F6}{z}}+e^{-i\color{#3D99F6}{z}}}{2} \quad \quad \small \color{#3D99F6}{\text{Putting }z=i} \\ \implies \cos \color{#3D99F6}{i} & = \frac{e^{\color{#3D99F6}{i^2}}+e^{-\color{#3D99F6}{i^2}}}{2} = \frac{e^{-1}+e^1}{2} \approx \boxed{1.543} \end{aligned}

Patience Patience
May 30, 2016

cosh 1=1.543

Akash Shukla
May 31, 2016

c o s ( i ) = 1 + 1 2 ! + 1 4 ! + 1 6 ! + 1 8 ! cos(i) = 1+\dfrac{1}{2!}+\dfrac{1}{4!}+\dfrac{1}{6!}+\dfrac{1}{8!}\cdots 1.543 Very nice observation. Complex cos has crossed its limit.

It's just simply the equivalent of c o s h ( 1 ) cosh(1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...