c o s 2 θ cos^2 \theta series

Geometry Level 2

c o s 2 1 5 + c o s 2 2 0 + c o s 2 2 5 + . . . . . . . . . . . . + c o s 2 7 5 = ? ? \large cos^2 15^{\circ}+cos^2 20^{\circ}+cos^2 25^{\circ}+............+cos^2 75^{\circ}=??

Find the value of that series.

6 0 None of them 13 2 \frac{13}{2} \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Nov 25, 2017

c o s 2 1 5 + c o s 2 2 0 + c o s 2 2 5 + . . . . . . . . . . . . + c o s 2 7 5 = c o s 2 1 5 + c o s 2 2 0 + c o s 2 2 5 + . . . . . . . . . . . . + c o s 2 7 0 + c o s 2 7 5 = c o s 2 1 5 + c o s 2 2 0 + c o s 2 2 5 + . . . . . . . . . . . . + c o s 2 ( 90 20 ) + c o s 2 ( 90 15 ) = c o s 2 1 5 + c o s 2 2 0 + c o s 2 2 5 + . . . . . . . . . . . . + s i n 2 2 0 + s i n 2 1 5 cos^2 15^{\circ}+cos^2 20^{\circ}+cos^2 25^{\circ}+............+cos^2 75^{\circ}\\ =cos^2 15^{\circ}+cos^2 20^{\circ}+cos^2 25^{\circ}+............+cos^2 70^{\circ}+cos^2 75^{\circ}\\ =cos^2 15^{\circ}+cos^2 20^{\circ}+cos^2 25^{\circ}+............+cos^2(90-20)^{\circ} +cos^2 (90-15)^{\circ}\\ =cos^2 15^{\circ}+cos^2 20^{\circ}+cos^2 25^{\circ}+............+sin^2 20^{\circ}+sin^2 15^{\circ}

= ( c o s 2 1 5 + s i n 2 1 5 ) + ( c o s 2 2 0 + s i n 2 2 0 ) + . . . . . . . . . . . + c o s 2 4 5 Here are 6 pair. We can easily find it with a+(n-1)d formula = 1 + 1 + 1 + 1 + 1 + 1 + 1 2 = 13 2 =(cos^2 15^{\circ}+sin^2 15^{\circ})+(cos^2 20^{\circ}+sin^2 20^{\circ})+...........+cos^2 45^{\circ}\quad\boxed{\color{#3D99F6}{\text{Here are 6 pair. We can easily find it with a+(n-1)d formula}}}\\ =1+1+1+1+1+1+\frac{1}{2}\\ =\boxed{\frac{13}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...