Cosec Raining (fixed)

Geometry Level 5

y = A csc ( A ) + B csc ( B ) + C csc ( C ) \large y = A \csc (A) + B \csc (B) + C \csc (C)

For 0 < A , B , C π 2 0 < A, B, C \le \frac \pi 2 , find the maximum value of y y .

Notation: csc ( ) \csc(\cdot) denotes the cosecant function.


The answer is 4.712.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 15, 2017

Since A csc A A\csc A , B csc B B\csc B and C csc C C\csc C are identical function, y y is maximum when x csc x x\csc x is maximum. We shall prove that f ( x ) = x csc x = x sin x f(x) = x\csc x = \dfrac x{\sin x} is an increasing function for 0 < x π 2 0 < x \le \frac \pi 2 . Therefore, the maximum of f ( x ) f(x) , f m a x = f ( π 2 ) = π 2 sin π 2 = π 2 f_{max} = f \left(\frac \pi 2\right) = \dfrac {\frac \pi 2}{\sin \frac \pi 2} = \dfrac \pi 2 . And the maximum pf y y , y m a x = 3 f m a x = 3 π 2 4.712 y_{max} = 3f_{max} = \dfrac {3\pi}2 \approx \boxed{4.712} .

Proof: Let us prove that f ( x ) = x sin x f(x) = \dfrac x{\sin x} is an increasing function for 0 < x < π 2 0 < x < \frac \pi 2 . We need to prove that f ( x ) > 1 f'(x) > 1 .

f ( x ) = x sin x f ( x ) = d d x ( x sin x ) = 1 sin x x cos x sin 2 x = 1 sin x ( 1 x tan x ) By Maclaurin series = 1 sin x ( 1 x x + x 3 3 + 2 x 5 15 + . . . ) Dividing up and down by x = 1 sin x ( 1 1 1 + x 2 3 + 2 x 4 15 + . . . ) Note that 1 1 + x 2 3 + 2 x 4 15 + . . . < 1 \begin{aligned} f(x) & = \frac x{\sin x} \\ f'(x) & = \frac d{dx}\left(\frac x{\sin x} \right) \\ & = \frac 1{\sin x} - \frac {x\cos x}{\sin^2 x} \\ & = \frac 1{\sin x}\left(1-\frac x{\color{#3D99F6}\tan x}\right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \frac 1{\sin x}\left(1- {\color{#3D99F6} \frac x{x+\frac {x^3}3 + \frac {2x^5}{15}+...}}\right) & \small \color{#3D99F6} \text{Dividing up and down by }x \\ & = \frac 1{\sin x}\left(1-{\color{#3D99F6} \frac 1{1+\frac {x^2}3 + \frac {2x^4}{15}+...}}\right) & \small \color{#3D99F6} \text{Note that } \frac 1{1+\frac {x^2}3 + \frac {2x^4}{15}+...} < 1 \end{aligned}

We note that 1 sin x > 0 \dfrac 1{\sin x} > 0 and 1 x tan x > 0 1-\dfrac x{\tan x} > 0 , f ( x ) > 0 \implies f'(x) > 0 and f ( x ) f(x) , an increasing function, for 0 < x < π 2 0 < x < \frac \pi 2 .

I was thinking if we could prove it by Jensen's inequality. But we finally reach here, no matter.

Kartik Sharma - 4 years, 2 months ago
Sudhamsh Suraj
Mar 14, 2017

x c o s e c ( x ) xcosec(x) is an increasing function. in (0,π/2).

Because ,

Consider f ( x ) f(x) = x c o s e c ( x ) xcosec(x) ,

f ( x ) f'(x) = c o s e c ( x ) x c o s e c ( x ) c o t ( x ) cosec(x) - xcosec(x)cot(x) ,

f ( x ) f'(x) = c o s e c ( x ) ( 1 x c o t ( x ) ) cosec(x)(1-xcot(x)) ,

f ( x ) f'(x) = ( c o s e c ( x ) ( t a n ( x ) x ) / t a n ( x ) (cosec(x)(tan(x) - x)/tan(x) ,

We know that, s i n ( x ) sin(x) < x x < t a n ( x ) tan(x) .

So , we can conclude that f ( x ) f'(x) is positive in(0,π/2).

So f ( x ) f(x) is increasing function,

So it is maximum at π/2 ,

Therefore​, the given equation has maximum at A=B=C=π/2.

So maximum value is 3π/2 = 4.172 .

Awsome solution

Nivedit Jain - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...