Cosecant Inverse Integarl

Calculus Level 4

Compute 1 99 csc 1 ( x ) d x . \large \int_{1}^{99} \csc^{-1} (x) \, \mathrm{d}x. Note: The above is not a reciprocal, it is arc-cosecant.


The answer is 4.717.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Indronil Ghosh
Apr 29, 2014

First, let's take the indefinite integral using integration by parts.

I = csc 1 ( x ) d x \displaystyle I =\int \csc^{-1} (x) \,\mathrm{d}x

Let u = csc 1 ( x ) u= \csc^{-1} (x) , and d v = d x \,\mathrm{d}v=\mathrm{d}x , so d u = d x x x 2 1 \,\mathrm{d}u=-\dfrac{\mathrm{d}x}{x\sqrt{x^2-1}} (for x > 0 x>0 ), and v = x \,v=x . Then, I = u v v d u = x csc 1 ( x ) + d x x 2 1 \displaystyle I = uv-\int v\,\mathrm{d}u = x\csc^{-1}(x) + \int \frac{\mathrm{d}x}{\sqrt{x^2-1}}

Now if we make the trig. substitution x = sec θ d x = sec θ tan θ \,x=\sec \theta\,\,\,\Rightarrow\,\,\,\mathrm{d}x=\sec\theta\tan\theta ,

d x x 2 1 = sec θ d θ = ln ( sec θ + tan θ ) = ln ( sec θ + sec 2 θ 1 ) = ln ( x + x 2 1 ) \begin{aligned} \displaystyle \rightarrow \int \frac{\mathrm{d}x}{\sqrt{x^2-1}}=\int \sec \theta\,\mathrm{d} \theta =\ln\left(\sec\theta+\tan\theta\right) &= \ln\left(\sec\theta + \sqrt{\sec^2\theta -1}\right) \\ &=\ln\left(x+\sqrt{x^2-1}\right) \end{aligned}

(for x > 0 x>0 , ignoring the constant of integration)

So we have I = x csc 1 ( x ) + ln ( x + x 2 1 ) \displaystyle I=x\csc^{-1}(x) + \ln\left(x+\sqrt{x^2-1}\right)

Now, our definite integral is I ( 99 ) I ( 1 ) I(99)-I(1) .

I ( 1 ) = csc 1 ( 1 ) = sin 1 ( 1 ) = π 2 . I(1)=\csc^{-1}(1) = \sin^{-1}(1)=\dfrac{\pi}{2}. We can approximate π 2 \dfrac{\pi}{2} as 1.57 1.57 .

Here's the fun part, approximating our way to

I ( 99 ) = 99 csc 1 ( 99 ) + ln ( 99 + 9 9 2 1 ) I(99)=99\csc^{-1}(99) + \ln\left(99+\sqrt{99^2-1}\right)

For the first term, since csc 1 ( x ) = sin 1 ( 1 x ) \csc^{-1}(x)=\sin^{-1}\left(\dfrac{1}{x}\right) , we want 99 sin 1 ( 1 99 ) 99\sin^{-1}\left(\dfrac{1}{99}\right) .

Now we can use the small-angle approximation sin x x \,\sin x \approx x\, (since 1 99 \frac{1}{99} is close enough to 0 \,0 ), so that sin 1 ( 1 x ) 1 x \sin^{-1}\left(\dfrac{1}{x}\right) \approx \dfrac{1}{x} . Then 99 sin 1 ( 1 99 ) = 99 csc 1 ( 99 ) \,99\sin^{-1}\left(\dfrac{1}{99}\right)=99\csc^{-1}(99)\, is pretty close to 1 1 .

For the second term, after working 9 9 2 99^2 out, we want to find ln ( 99 + 70 2 ) \ln(99+70\sqrt{2}) .

Approximating 2 \sqrt{2} as 1.414 1.414 , 70 × 1.414 = 98.98 70\times 1.414=98.98 .

In order to find ln ( 99 + 98.98 ) = ln ( 197.98 ) \ln(99+98.98)=\ln(197.98) , we can split this into

ln ( 1.9798 ) + ln ( 1 0 2 ) = ln ( 1.9798 ) + 2 ln ( 10 ) \ln(1.9798)+\ln(10^2)=\ln(1.9798)+2\ln(10) .

I got pretty lucky like Richard Feynman this time, because I don't know by heart the natural logs of anything besides 2 2 and 10 10 , and I think I even learned ln 10 \ln10 from Feynman's Surely You're Joking, Mr. Feynman! .

Anyway, we can approximate ln 1.9798 \ln 1.9798 as ln 2 \ln 2 which is approximately 0.69 0.69 , and we can approximate ln 10 \ln 10 as 2.3 2.3 .

Notice that this method of taking ln ( x 1 0 n ) = ln x + n ln 10 \,\ln(x \cdot 10^n)=\ln x + n\ln 10\, allows us to decently approximate the natural logs of really large or small numbers, as long as you know the nat. logs of the first 10 integers; pretty cool!

Back to the problem, we then have that ln ( 197.98 ) ln 2 + 2 ln 10 0.69 + 4.6 = 5.29 \ln(197.98) \approx \ln 2 + 2\ln10 \approx 0.69+4.6 =5.29 .

So we have I ( 99 ) 1 + 5.29 = 6.29 I(99)\approx 1+5.29=6.29 .

Finally, 1 99 csc 1 ( x ) d x = I ( 99 ) I ( 1 ) 6.29 1.57 = 4.72 \displaystyle \int_1^{99} \csc^{-1} (x) \,\mathrm{d}x = I(99)-I(1) \approx 6.29 - 1.57 = \boxed{4.72} .

I used WA to compute the final answer. However, the way you approximated out the answer, that too with great accuracy, was superb! Loved it :)

Parth Thakkar - 7 years, 1 month ago

I = 1 99 1 csc 1 x d x By integration by parts = x csc 1 x 1 99 + 1 99 x x x 2 1 d x Note that d d x csc 1 x = 1 x x 2 1 = 99 csc 1 99 π 2 + 1 99 1 x 2 1 d x Let x = sec θ d x = sec θ tan θ d θ = 99 csc 1 99 π 2 + 0 sec 1 99 sec θ tan θ sec 2 θ 1 d θ = 99 csc 1 99 π 2 + 0 sec 1 99 sec θ d θ = 99 csc 1 99 π 2 + ln ( tan θ + sec θ ) 0 sec 1 99 = 99 csc 1 99 π 2 + ln ( 70 2 + 99 ) ln ( 0 + 1 ) = 99 csc 1 99 π 2 + ln ( 70 2 + 99 ) 4.717 \begin{aligned} I & = \int_1^{99} {\color{#3D99F6}1} \cdot {\color{#D61F06} \csc^{-1} x} \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = {\color{#3D99F6}x}{\color{#D61F06} \csc^{-1} x}\ \bigg|_1^{99} {\color{#D61F06}+} \int_1^{99} \frac {\color{#3D99F6}x}{\color{#D61F06}x\sqrt{x^2-1}} \ dx & \small \color{#3D99F6} \text{Note that }\frac d{dx} \csc^{-1} x = - \frac 1{x\sqrt{x^2-1}} \\ & = 99\csc^{-1}99 - \frac \pi 2 + \int_1^{99} \frac 1{\sqrt{x^2-1}} \ dx & \small \color{#3D99F6} \text{Let }x = \sec \theta \implies dx = \sec \theta \tan \theta \ d \theta \\ & = 99\csc^{-1}99 - \frac \pi 2 + \int_0^{\sec^{-1} 99} \frac {\sec \theta \tan \theta}{\sqrt{\sec^2 \theta -1}} \ d\theta \\ & = 99\csc^{-1}99 - \frac \pi 2 + \int_0^{\sec^{-1} 99} \sec \theta \ d\theta \\ & = 99\csc^{-1}99 - \frac \pi 2 + \ln(\tan \theta + \sec \theta) \ \bigg|_0^{\sec^{-1} 99} \\ & = 99\csc^{-1}99 - \frac \pi 2 + \ln \left(70\sqrt 2 + 99 \right) - \ln \left(0+1 \right) \\ & = 99\csc^{-1}99 - \frac \pi 2 + \ln \left(70\sqrt 2 + 99 \right) \\ & \approx \boxed{4.717} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...