Cosecant Trig Sum

Algebra Level pending

Calculate k = 1 2 n csc 2 ( k π 2 n + 1 ) \displaystyle \sum_{k=1}^{2n} \csc^2 \left(\frac{k\pi}{2n+1}\right) for n = 2019 n=2019 .


The answer is 5437840.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 27, 2019

Note that sin ( 2 n + 1 ) x = I m [ ( cos x + i sin x ) 2 n + 1 ] = j = 0 n ( 2 n + 1 2 j + 1 ) ( 1 ) j cos 2 n 2 j x sin 2 j + 1 x = sin 2 n + 1 x F n ( cot 2 x ) \begin{aligned} \sin(2n+1)x & = \; \mathfrak{Im}\left[(\cos x + i \sin x)^{2n+1}\right] \; = \; \sum_{j=0}^n \binom{2n+1}{2j+1}(-1)^j \cos^{2n-2j}x \sin^{2j+1}x \\ & = \; \sin^{2n+1}x F_n(\cot^2x) \end{aligned} where F n ( X ) = j = 0 n ( 2 n + 1 2 j + 1 ) ( 1 ) j X n j = ( 2 n + 1 1 ) X n ( 2 n + 1 3 ) X n 1 + F_n(X) \; = \; \sum_{j=0}^n \binom{2n+1}{2j+1}(-1)^j X^{n-j} \; = \; \binom{2n+1}{1}X^n - \binom{2n+1}{3}X^{n-1} + \cdots We see that F n ( cot 2 x ) = 0 F_n(\cot^2x) = 0 whenever sin ( 2 n + 1 ) x = 0 \sin(2n+1)x=0 but sin x 0 \sin x \neq 0 . Thus the roots of F n ( X ) F_n(X) are cot 2 k π 2 n + 1 1 k n \cot^2\tfrac{k\pi}{2n+1} \hspace{2cm} 1 \le k \le n Thus k = 1 2 n csc 2 k π 2 n + 1 = 2 k = 1 n csc 2 k π 2 n + 1 = 2 ( n + k = 1 n cot 2 k π 2 n + 1 ) = 2 ( n + ( 2 n + 1 3 ) × ( 2 n + 1 1 ) 1 ) = 2 [ n + 1 3 n ( 2 n 1 ) ] = 4 3 n ( n + 1 ) \begin{aligned} \sum_{k=1}^{2n}\csc^2\tfrac{k\pi}{2n+1} & = \; 2\sum_{k=1}^n\csc^2\tfrac{k\pi}{2n+1} \; = \; 2\left(n + \sum_{k=1}^n \cot^2\tfrac{k\pi}{2n+1}\right) \\ & = \; 2\left(n + \binom{2n+1}{3} \times \binom{2n+1}{1}^{-1}\right) \; = \; 2\left[n + \tfrac13n(2n-1)\right] \\ & = \; \tfrac43n(n+1) \end{aligned} With n = 2019 n=2019 , the answer is 5437840 \boxed{5437840} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...