Cosine Chain

Geometry Level 2

cos ( 2 π 15 ) cos ( 4 π 15 ) cos ( 8 π 15 ) cos ( 14 π 15 ) = A B \large\cos\left(\dfrac{2\pi}{15}\right)\cos\left(\dfrac{4\pi}{15}\right)\cos\left(\dfrac{8\pi}{15}\right)\cos\left(\dfrac{14\pi}{15}\right)=\dfrac{A}{B}

If A , B A,B are co-prime integers , find B A B - A .

14 15 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chan Lye Lee
Oct 10, 2015

Let P = sin ( 2 π 15 ) sin ( 4 π 15 ) sin ( 8 π 15 ) sin ( 14 π 15 ) \displaystyle P = \sin\left(\frac{2\pi}{15}\right)\sin\left(\frac{4\pi}{15}\right)\sin\left(\frac{8\pi}{15}\right)\sin\left(\frac{14\pi}{15}\right) and Q = cos ( 2 π 15 ) cos ( 4 π 15 ) cos ( 8 π 15 ) cos ( 14 π 15 ) \displaystyle Q = \cos\left(\frac{2\pi}{15}\right)\cos\left(\frac{4\pi}{15}\right)\cos\left(\frac{8\pi}{15}\right)\cos\left(\frac{14\pi}{15}\right) . Then 16 P Q = sin ( 4 π 15 ) sin ( 8 π 15 ) sin ( 16 π 15 ) sin ( 28 π 15 ) = P \displaystyle 16PQ=\sin\left(\frac{4\pi}{15}\right)\sin\left(\frac{8\pi}{15}\right)\sin\left(\frac{16\pi}{15}\right)\sin\left(\frac{28\pi}{15}\right)=P implies that Q = 1 16 Q=\frac{1}{16} .

Hence, A = 1 A=1 and B = 16 B=16 which means that B A = 15 B-A=15 .

Beautiful and out of box approach. Congratulations.

Niranjan Khanderia - 5 years, 7 months ago

Log in to reply

Thanks! This technique can be used for some other problems involving product of cosines.

Chan Lye Lee - 5 years, 7 months ago
Raj Rajput
Oct 8, 2015

Liked the nice way you have solved. Congratulations.

Niranjan Khanderia - 5 years, 7 months ago

Log in to reply

Thank you :)

RAJ RAJPUT - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...