Cosine Complexity

Algebra Level 2

cos ( 1 ) = ? \large \cos{(\sqrt{-1})} = ?

Assume: Polar representations of 1 \sqrt{-1} must have an angle in the range ( π , + π ) (-\pi,+\pi) .


The answer is 1.54308.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Note first the identity cosh ( x ) = e x + e x 2 \cosh(x) = \dfrac{e^{x} + e^{-x}}{2} . Then cosh ( i y ) = e i y + e i y 2 = ( cos ( y ) + i sin ( y ) ) + ( cos ( y ) + i sin ( y ) ) 2 = 2 cos ( y ) 2 = cos ( y ) \cosh(iy) = \dfrac{e^{iy} + e^{-iy}}{2} = \dfrac{(\cos(y) + i \sin(y)) + (\cos(-y) + i \sin(-y))}{2} = \dfrac{2\cos(y)}{2} = \cos(y) ,

where Euler's formula e i θ = cos ( θ ) + i sin ( θ ) e^{i\theta} = \cos(\theta) + i \sin(\theta) was used. We then see that

cos ( 1 ) = cos ( i ) = cosh ( i × i ) = cosh ( 1 ) = e 1 + e 1 2 = e 2 + 1 2 e 1.543 \cos(\sqrt{-1}) = \cos(i) = \cosh(i \times i) = \cosh(-1) = \dfrac{e^{-1} + e^{1}}{2} = \dfrac{e^{2} + 1}{2e} \approx \boxed{1.543} .

Krishna Karthik
Oct 21, 2018

From Euler’s formula: e i x = c o s ( x ) + i sin ( x ) e^{ix} = cos(x) + i\sin(x) ,

making cos ( x ) \cos(x) the subject and substituting i i , we get

cos ( x ) = e i x + e i x 2 \cos(x)= \frac{e^{ix}+e^{-ix} }{2} .

Substituting i i ,

cos ( i ) = e + e 1 2 \cos(i)= \frac{e+e^{-1} }{2} , which we know is cosh ( 1 ) \cosh(1) , which is 1.54308.

Edwin Gray
Sep 4, 2018

e^(ix) = cos(x) + I sin(x). Letting x =I, then x = -I, e^(-1) cos(I) + I sin(I), and e^(-1) = cos(I) - I sin(I). adding, cos(I) = (1/2) 9e + 1/e)) = 1.543. Ed Gray

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...