Cosine Deviation

Geometry Level pending

Find the value of

cos 2 ( π 9 + 2020 ) + cos 2 ( 7 π 9 + 2020 ) + cos 2 ( 13 π 9 + 2020 ) \cos^2 \left(\frac{\pi}{9}+2020\right)+\cos^2 \left(\frac{7\pi}{9}+2020\right) +\cos^2 \left( \frac {13\pi}{9}+2020\right)

All of the angles are in radians.


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 19, 2020

Let θ = 2020 \theta = 2020 . Then we have:

X = cos 2 ( π 9 + θ ) + cos 2 ( 7 π 9 + θ ) + cos 2 ( 13 π 9 + θ ) = 1 2 ( 3 + cos ( 2 π 9 + 2 θ ) + cos ( 14 π 9 + 2 θ ) + cos ( 26 π 9 + 2 θ ) ) = 1 2 ( 3 + cos ( 2 π 9 + 2 θ ) cos ( 5 π 9 + 2 θ ) + cos ( 8 π 9 + 2 θ ) ) = 1 2 ( 3 + cos ( 2 π 9 + 2 θ ) cos ( 5 π 9 + 2 θ ) + cos ( π 3 + 5 π 9 + 2 θ ) ) = 1 2 ( 3 + cos ( 2 π 9 + 2 θ ) cos ( 5 π 9 + 2 θ ) + 1 2 cos ( 5 π 9 + 2 θ ) 3 2 sin ( 5 π 9 + 2 θ ) ) = 1 2 ( 3 + cos ( 2 π 9 + 2 θ ) 1 2 cos ( 5 π 9 + 2 θ ) 3 2 sin ( 5 π 9 + 2 θ ) ) = 1 2 ( 3 + cos ( 2 π 9 + 2 θ ) 1 2 cos ( π 3 + 2 π 9 + 2 θ ) 3 2 sin ( π 3 + 2 π 9 + 2 θ ) ) = 1 2 ( 3 + cos ( 2 π 9 + 2 θ ) 1 4 cos ( 2 π 9 + 2 θ ) + 3 4 sin ( 2 π 9 + 2 θ ) 3 4 sin ( 2 π 9 + 2 θ ) 3 4 cos ( 2 π 9 + 2 θ ) ) = 3 2 = 1.5 \begin{aligned} X & = \cos^2\left(\frac \pi 9 + \theta \right) + \cos^2 \left(\frac {7\pi}9 + \theta\right) + \cos^2 \left(\frac {13\pi}9 + \theta\right) \\ & = \frac 12 \left(3+\cos \left(\frac {2\pi}9 + 2\theta\right) + \cos \left(\frac {14\pi}9 + 2\theta\right) + \cos \left(\frac {26\pi}9 + 2\theta\right)\right) \\ & = \frac 12 \left(3+\cos \left(\frac {2\pi}9 + 2\theta\right) - \cos \left(\frac {5\pi}9 + 2\theta\right) + \cos \left(\frac {8\pi}9 + 2\theta\right)\right) \\ & = \frac 12 \left(3+\cos \left(\frac {2\pi}9 + 2\theta\right) - \cos \left(\frac {5\pi}9 + 2\theta\right) + \cos \left(\frac \pi 3 + \frac {5\pi}9 + 2\theta\right)\right) \\ & = \frac 12 \left(3+\cos \left(\frac {2\pi}9 + 2\theta\right) - \cos \left(\frac {5\pi}9 + 2\theta\right) + \frac 12 \cos \left(\frac {5\pi}9 + 2\theta\right) - \frac {\sqrt 3}2 \sin \left(\frac {5\pi}9 + 2\theta\right)\right) \\ & = \frac 12 \left(3+\cos \left(\frac {2\pi}9 + 2\theta\right) - \frac 12 \cos \left(\frac {5\pi}9 + 2\theta\right) - \frac {\sqrt 3}2 \sin \left(\frac {5\pi}9 + 2\theta\right)\right) \\ & = \frac 12 \left(3+\cos \left(\frac {2\pi}9 + 2\theta\right) - \frac 12 \cos \left(\frac \pi 3 + \frac {2\pi}9 + 2\theta\right) - \frac {\sqrt 3}2 \sin \left(\frac \pi3 + \frac {2\pi}9 + 2\theta\right)\right) \\ & = \small \frac 12 \left(3+\cos \left(\frac {2\pi}9 + 2\theta\right) - \frac 14 \cos \left(\frac {2\pi}9 + 2\theta\right) + \frac {\sqrt 3}4 \sin \left(\frac {2\pi}9 + 2\theta\right) - \frac {\sqrt 3}4 \sin \left(\frac {2\pi}9 + 2\theta\right) - \frac 34 \cos \left(\frac {2\pi}9 + 2\theta\right) \right) \\ & = \frac 32 = \boxed{1.5} \end{aligned}

The given sum is 1.5 + 1 2 ( cos ( 2 π 9 + 4040 ) + cos ( 14 π 9 + 4040 ) + cos ( 26 π 9 + 4040 ) ) = 1.5 + 1 2 ( 2 cos ( 14 π 9 + 4040 ) cos ( 12 π 9 ) + cos ( 14 π 9 + 4040 ) ) = 1.5 + 0 = 1.5 1.5+\dfrac{1}{2}\left (\cos \left (\dfrac{2π}{9}+4040\right )+\cos \left (\dfrac{14π}{9}+4040\right )+\cos \left (\dfrac{26π}{9}+4040\right )\right ) =1.5+\dfrac{1}{2}\left (2\cos \left (\dfrac{14π}{9}+4040\right )\cos \left (\dfrac{12π}{9}\right) +\cos \left (\dfrac{14π}{9}+4040\right )\right) =1.5+0=\boxed {1.5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...