Cosine Everywhere

Calculus Level 3

lim x 0 cos x cos x 3 sin 2 x . \displaystyle \lim_{x \to 0} \frac { \sqrt{\cos x} - \sqrt[3]{\cos x} }{\sin^2 x} .

Evaluate the closed form of the limit above to 3 significant figures.

Details and assumptions

The answer to this Calculus problem is a real number.


The answer is -0.08333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jatin Yadav
Dec 14, 2013

L = lim x 0 1 x 2 2 ! + x 4 4 ! 1 x 2 2 ! + x 4 4 ! 3 x 2 L=\displaystyle \lim_{x \to 0} \frac{\sqrt{1 -\frac{x^2}{2!} + \frac{x^4}{4!} \dots} - \sqrt[3] {1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots}}{x^2} ( Using lim x 0 sin x x = 1 \displaystyle \lim_{x \to 0} \frac{\sin x}{x} = 1 )

Using the approximation ( 1 + x ) n 1 + n x (1+x)^n \approx 1 + nx , if x < < 1 x <<1 , and ignoring unimp. terms,

We get L = lim x 0 1 x 2 4 1 + x 2 6 x 2 = 1 12 L = \lim_{x \to 0} \frac{ 1 - \frac{x^2}{4} - 1 + \frac{x^2}{6}}{x^2} = \boxed{\frac{-1}{12}}

1 12 - \frac {1}{12} is a special number. Coincidence? I think not.

Sharky Kesa - 7 years, 1 month ago

Really nice solution! I just used the L'Hôpital's rule

Carlos David Nexans - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...