Cosine fun

Geometry Level 3

If 128 cos 8 1 0 256 cos 6 1 0 + 160 cos 4 1 0 32 cos 2 1 0 + 1 128\cos^{8}10^{\circ } - 256\cos^{6} 10^{ \circ} + 160 \cos^{4} 10^{\circ } - 32\cos^{2} 10^{\circ } + 1 can be expressed in the form cos x \cos x^{ \circ} for a positive angle x x^\circ , then what is the value of x x ?


The answer is 80.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 28, 2015

Expanding cos 8 θ \cos{8\theta} into a function of cos θ \cos{\theta} , we have:

cos 8 θ = 2 cos 2 4 θ 1 = 2 ( 2 cos 2 2 θ 1 ) 2 1 = 2 ( 2 ( 2 cos 2 θ 1 ) 2 1 ) 2 1 = 2 ( 2 ( 4 cos 4 θ 4 cos 2 θ + 1 ) 1 ) 2 1 = 2 ( 8 cos 4 θ 8 cos 2 θ + 1 ) 2 1 = 2 ( 64 cos 8 θ 128 cos 6 θ + 80 cos 4 θ 16 cos 2 θ + 1 ) 1 = 128 cos 8 θ 256 cos 6 θ + 160 cos 4 θ 32 cos 2 θ + 1 \begin{aligned} \cos{8\theta} & = 2\cos^2{4\theta} - 1 \\ & = 2\left( 2\cos^2{2\theta} - 1 \right)^2 - 1 \\ & = 2\left( 2\left(2\cos^2{\theta} - 1\right)^2 - 1 \right)^2 - 1 \\ & = 2\left( 2\left(4\cos^4{\theta} - 4\cos^2{\theta} + 1\right) - 1 \right)^2 - 1 \\ & = 2\left( 8\cos^4{\theta} - 8\cos^2{\theta} + 1 \right)^2 - 1 \\ & = 2\left( 64\cos^8{\theta} - 128\cos^6{\theta} + 80 \cos^4{\theta} -16\cos^2{\theta} + 1 \right) - 1 \\ & = 128\cos^8{\theta} - 256 \cos^6 {\theta} + 160 \cos^4{\theta} -32\cos^2{\theta} + 1 \end{aligned}

\Rightarrow When θ = 1 0 x = 80 \theta = 10^\circ\quad \Rightarrow x = \boxed{80} .

Moderator note:

Simple straightforward approach.

Hobart Pao
Apr 22, 2015

Use Chebyshev polynomials, specifically T 8 T_{8} . This is basically the octuple angle formula, so 10 x 8 = 80 degrees. Or you could use algebraic manipulation using pythagorean identities and demoivre's theorem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...