Cosine is dancing

Geometry Level 3

cos 2 π 2013 + cos 4 π 2013 + cos 6 π 2013 + . . . + cos 2010 π 2013 + cos 2012 π 2013 = ? \cos \dfrac{2\pi}{2013} + \cos \dfrac{4\pi}{2013} + \cos \dfrac{6\pi}{2013} +...+ \cos \dfrac{2010\pi}{2013} + \cos \dfrac{2012\pi}{2013} = \ ?


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = cos 2 π 2013 + cos 4 π 2013 + cos 6 π 2013 + . . . + cos 2010 π 2013 + cos 2012 π 2013 S = \cos \dfrac{2\pi}{2013}+\cos \dfrac{4\pi}{2013}+\cos \dfrac{6\pi}{2013}+...+\cos \dfrac{2010\pi}{2013}+\cos \dfrac{2012\pi}{2013}

2 S sin π 2013 = 2 sin π 2013 cos 2 π 2013 + 2 sin π 2013 cos 4 π 2013 + 2 sin π 2013 cos 6 π 2013 + . . . + 2 sin π 2013 cos 2010 π 2013 + 2 sin π 2013 cos 2012 π 2013 2S \sin \frac{\pi}{2013} = 2 \sin \frac{\pi}{2013}\cos \dfrac{2\pi}{2013}+2 \sin \frac{\pi}{2013}\cos \dfrac{4\pi}{2013}+2 \sin \frac{\pi}{2013}\cos \dfrac{6\pi}{2013}+...+2 \sin \frac{\pi}{2013}\cos \dfrac{2010\pi}{2013}+2 \sin \frac{\pi}{2013}\cos \dfrac{2012\pi}{2013}

2 S sin π 2013 = [ sin 3 π 2013 sin π 2013 ] + [ sin 5 π 2013 sin 3 π 2013 ] + . . . + [ sin 2013 π 2013 sin 2012 π 2013 ] 2S \sin \frac{\pi}{2013} = [\sin \frac{3\pi}{2013} - \sin \frac{\pi}{2013}] + [\sin \frac{5\pi}{2013} - \sin \frac{3\pi}{2013}] + ... + [\sin \frac{2013\pi}{2013} - \sin \frac{2012\pi}{2013}]

2 S sin π 2013 = sin 2013 π 2013 sin π 2013 = sin π 2013 2S \sin \frac{\pi}{2013} = \sin \frac{2013\pi}{2013}- \sin \frac{\pi}{2013} = - \sin \frac{\pi}{2013}

S = 1 2 S = - \frac{1}{2}

Another solution:

Consider the equation x 2013 = 1 x^{2013}=1

1 + k = 1 2012 cos 2 k π 2013 = 0 \implies 1+\sum_{k=1}^{2012} \cos\dfrac{2k\pi}{2013} =0

1 + 2 k = 1 1006 cos 2 k π 2013 = 0 1+2\sum_{k=1}^{1006} \cos\dfrac{2k\pi}{2013} =0

So cos 2 π 2013 + cos 4 π 2013 + cos 6 π 2013 + . . . + cos 2010 π 2013 + cos 2012 π 2013 = 0.5 \cos \dfrac{2\pi}{2013}+\cos \dfrac{4\pi}{2013}+\cos \dfrac{6\pi}{2013}+...+\cos \dfrac{2010\pi}{2013}+\cos \dfrac{2012\pi}{2013}= -0.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...