Cosine of an Integer

Geometry Level 3

tan ( π 12 ) = a b a + b \tan\left(\dfrac{\pi}{12}\right) = \sqrt{\dfrac{a-\sqrt{b}}{a+\sqrt{b}}}

If the equation above holds true for integers a a and b b with b b square-free, find a × b a\times b .

Hint : Use double angle identities .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Solution as suggested by Sid Rana

tan π 12 = tan ( π 4 π 6 ) = 1 1 3 1 + 1 3 = 3 1 3 + 1 = ( 3 1 ) 2 ( 3 + 1 ) 2 = 4 2 3 4 + 2 3 = 2 3 2 + 3 \begin{aligned} \tan \frac{\pi}{12} & = \tan \left(\frac{\pi}{4} - \frac{\pi}{6}\right) \\ & = \frac{1 - \frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}} \\ & = \frac{\sqrt{3}-1}{\sqrt{3}+1} \\ & = \sqrt{\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)^2}} \\ & = \sqrt{\frac{4-2\sqrt{3}}{4+2\sqrt{3}}} \\ & = \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}} \end{aligned}

a × b = 2 × 3 = 6 \implies a \times b = 2 \times 3 = \boxed{6}


Previous solution

tan ( π 6 ) = 1 3 2 tan ( π 12 ) 1 tan 2 ( π 12 ) = 1 3 tan 2 ( π 12 ) + 2 3 tan ( π 12 ) 1 = 0 tan ( π 12 ) = 2 3 ± 12 + 4 2 = 2 3 Since tan ( π 12 ) > 0 , 2 3 is rejected. = ( 2 3 ) 2 1 = ( 2 3 ) 2 ( 2 + 3 ) ( 2 3 ) Note that ( 2 + 3 ) ( 2 3 ) = 1 tan ( π 12 ) = 2 3 2 + 3 \begin{aligned} \tan \left(\frac{\pi}{6} \right) & = \frac{1}{\sqrt{3}} \\ \implies \frac{2\tan \left(\frac{\pi}{12} \right)}{1-\tan^2 \left(\frac{\pi}{12} \right)} & = \frac{1}{\sqrt{3}} \\ \tan^2 \left(\frac{\pi}{12} \right) + 2 \sqrt{3} \tan \left(\frac{\pi}{12} \right) - 1 & = 0 \\ \implies \tan \left(\frac{\pi}{12} \right) & = \frac{-2\sqrt{3} \pm \sqrt{12+4}}{2} \\ & = 2 - \sqrt{3} \quad \quad \small \color{#3D99F6}{\text{Since } \tan \left(\frac{\pi}{12} \right) > 0, \, -2-\sqrt{3} \text{ is rejected.}} \\ & = \sqrt{\frac{(2-\sqrt{3})^2}{1}} \\ & = \sqrt{\frac{(2-\sqrt{3})^2}{\color{#3D99F6}{(2+\sqrt{3})(2-\sqrt{3})}}} \quad \quad \small \color{#3D99F6}{\text{Note that } (2+\sqrt{3})(2-\sqrt{3}) = 1} \\ \implies \tan \left(\frac{\pi}{12} \right) & = \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}} \end{aligned}

a × b = 2 × 3 = 6 \implies a \times b = 2 \times 3 = \boxed{6}

Perfectly done! Kudos to you!

aalekh patel - 5 years, 1 month ago

But what if apply the formula for sum of angkes if tan like tan (45-30)

tan45-tan30

1+tan45tan30

root3-1

root3+1

Sid Rana - 5 years, 1 month ago

Log in to reply

Yes, it is even shorter solution. I have posted it. Thanks.

Chew-Seong Cheong - 5 years ago

You should get the same result.

Chew-Seong Cheong - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...