Cosine of Triangle numbers

Geometry Level 4

What is the value of n = 1 360 cos ( n ( n + 1 ) 2 ) \displaystyle \sum_{n=1}^{360} \cos\left(\frac{n(n+1)}{2}^\circ\right) ?


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Patrick Corn
Dec 19, 2019

Let T n = n ( n + 1 ) 2 . T_n = \frac{n(n+1)}2. Then cos ( T 359 n ) = cos ( ( 359 n ) ( 360 n ) 2 ) = cos ( 180 359 719 2 n + n 2 2 ) = cos ( 180 359 360 n + n 2 + n 2 ) = cos ( 180 + n 2 + n 2 ) = cos ( n 2 + n 2 ) = cos ( T n ) . \begin{aligned} \cos(T_{359-n}) &= \cos\left( \frac{(359-n)(360-n)}2 \right) \\ &= \cos\left( 180 \cdot 359 - \frac{719}2 n + \frac{n^2}2 \right) \\ &= \cos\left(180 \cdot 359 -360n + \frac{n^2+n}2 \right) \\ &= \cos\left(180+\frac{n^2+n}2\right) \\ &= -\cos\left(\frac{n^2+n}2 \right) = -\cos(T_n). \end{aligned} So all but the last two terms in the sum pair off and sum to zero, e.g. cos ( T 1 ) + cos ( T 358 ) = 0 , cos ( T 2 ) + cos ( T 357 ) = 0 , \cos(T_1) + \cos(T_{358}) = 0, \cos(T_2) + \cos(T_{357}) = 0, etc.

So the sum equals cos ( T 359 ) + cos ( T 360 ) = cos ( 180 359 ) + cos ( 180 361 ) = 1 + 1 = -2 . \cos(T_{359}) + \cos(T_{360}) = \cos(180 \cdot 359) + \cos(180 \cdot 361) = -1 + -1 = \fbox{-2}.

Brilliant, good idea

Venkataramana gandu - 1 year, 4 months ago
Chew-Seong Cheong
Dec 19, 2019

Let S S be the given sum. Then

S = n = 1 360 cos ( n ( n + 1 ) 2 ) By reflection k = a b f ( k ) = k = a b f ( a + b k ) = n = 1 360 cos ( ( 360 ( n 1 ) ) ( 360 ( n 2 ) ) 2 ) Since cos θ = cos ( θ m o d 36 0 ) = n = 1 360 cos ( ( 2 n 3 ) 18 0 + ( n 1 ) ( n 2 ) 2 ) and 2 n 3 is odd = n = 1 360 cos ( 18 0 + ( n 1 ) ( n 2 ) 2 ) and cos ( θ ) = cos θ = n = 1 360 cos ( 18 0 ( n 1 ) ( n 2 ) 2 ) and cos ( 18 0 θ ) = cos θ = n = 1 360 cos ( ( n 1 ) ( n 2 ) 2 ) = cos 0 n = 1 cos 0 n = 2 n = 3 360 cos ( ( n 1 ) ( n 2 ) 2 ) = 1 1 n = 1 358 cos ( n ( n + 1 ) 2 ) = 1 1 n = 1 360 cos ( n ( n + 1 ) 2 ) + cos ( 359 ( 360 ) 2 ) + cos ( 360 ( 361 ) 2 ) = 1 1 S 1 1 2 S = 4 S = 2 \begin{aligned} S & = \sum_{n=1}^{360} \cos \left(\frac {n(n+1)}2^\circ\right) \quad \quad \small \blue{\text{By reflection } \sum_{k=a}^b f(k) = \sum_{k=a}^b f(a+b-k)} \\ & = \sum_{n=1}^{360} \cos \left(\frac {(360-(n-1))(360-(n-2))}2^\circ\right) \quad \quad \small \blue{\text{Since }\cos \theta = \cos (\theta \bmod 360^\circ)} \\ & = \sum_{n=1}^{360} \cos \left(-(2n-3)180^\circ+\frac {(n-1)(n-2)}2^\circ\right) \quad \quad \small \blue{\text{and }2n-3 \text{ is odd}} \\ & = \sum_{n=1}^{360} \cos \left(-180^\circ+\frac {(n-1)(n-2)}2^\circ\right) \quad \quad \small \blue{\text{and }\cos(-\theta) = \cos \theta} \\ & = \sum_{n=1}^{360} \cos \left(180^\circ-\frac {(n-1)(n-2)}2^\circ\right) \quad \quad \small \blue{\text{and }\cos(180^\circ-\theta) = -\cos \theta} \\ & = - \sum_{n=1}^{360} \cos \left(\frac {(n-1)(n-2)}2^\circ\right) \\ & = - \underbrace{\cos 0^\circ}_{\blue{n=1}} - \underbrace{\cos 0^\circ}_{\blue{n=2}} - \sum_{n=3}^{360} \cos \left(\frac {(n-1)(n-2)}2^\circ\right) \\ & = - 1 - 1 - \sum_{n=1}^{358} \cos \left(\frac {n(n+1)}2^\circ\right) \\ & = - 1 - 1 - \blue{\sum_{n=1}^{360} \cos \left(\frac {n(n+1)}2^\circ\right)} + \cos \left(\frac {359(360)}2\right) + \cos \left(\frac {360(361)}2\right) \\ & = -1 - 1 - \blue S - 1 -1 \\ \implies 2S & = - 4 \\ S & = \boxed{-2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...