Cosine Raised to the Sine?

Calculus Level 3

lim x 0 ( cos x ) sin x 1 x 3 x 6 = ? \large\displaystyle \lim_{x \to 0} \frac {(\cos x)^{\sin x} - \sqrt{1-x^3}}{x^6} =\ ?


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jatin Yadav
Dec 14, 2013

First Consider sin x ln ( cos x ) \sin x \ln(\cos x) = ( x x 3 3 ! + x 5 5 ! ) ( ln ( 1 x 2 2 ! + x 4 4 ! ) ) (x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots)(\ln ( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots))

= ( x x 3 3 ! + x 5 5 ! ) ( x 2 2 ! + x 4 4 ! ( 1 x 2 2 ! + x 4 4 ! ) 2 ) (x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots)( - \frac{x^2}{2!} + \frac{x^4}{4!} \dots - ( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots)^2 \dots)

= x 3 2 x 7 80 -\frac{x^3}{2} - \frac{x^7}{80} \dots

Hence, ( cos x ) sin x = e sin x ln ( cos x ) = e x 3 2 x 7 80 {(\cos x)}^{\sin x} = e^{\sin x \ln (\cos x)} = e^{-\frac{x^3}{2} - \frac{x^7}{80} \dots}

= 1 x 3 2 x 7 80 + ( x 3 2 x 7 80 ) 2 1 -\frac{x^3}{2} - \frac{x^7}{80} \dots + (-\frac{x^3}{2} - \frac{x^7}{80} \dots)^2 \dots = 1 x 3 2 + x 6 8 1 -\frac{x^3}{2} + \frac{x^{6}}{8} \dots

Also, using 1 x = 1 x 2 x 2 8 \sqrt{1-x} = 1 - \frac{x}{2} -\frac{x^2}{8} \dots , 1 x 3 = 1 x 3 2 x 6 8 \sqrt{1-x^3} = 1 - \frac{x^3}{2} - \frac{x^6}{8} \dots

lim x 0 ( cos x ) ( sin x ) 1 x 3 x 6 \therefore \displaystyle \lim_{x \to 0} \frac{{(\cos x)}^{(\sin x)} - \sqrt{1 - x^3}}{x^6}

= lim x 0 ( 1 x 3 2 + x 6 8 ) ( 1 x 3 2 x 6 8 ) x 6 \displaystyle \lim_{x \to 0} \frac{(1 -\frac{x^3}{2} + \frac{x^{6}}{8} \dots) - (1 - \frac{x^3}{2} - \frac{x^6}{8} \dots)}{x^6}

= lim x 0 x 6 4 x 6 = 1 4 \displaystyle \lim_{x \to 0} \frac{\frac{x^6}{4} \dots}{x^6} = \boxed{\frac{1}{4}}

I have checked with the fx-570ES plus (calculator) and it give the answer: 0

Danny James - 7 years, 4 months ago

Thanks For the question @Pi Han Goh !! Enjoyed solving it. :)

Keshav Tiwari - 5 years, 2 months ago

Log in to reply

No problem!! =D

Pi Han Goh - 5 years, 2 months ago

Hi Jatin! Great solution......After finding the limit , I plotted this particular function on the plotting calculator and found that on zooming near x = 0 x=0 ...the function didint seem to have a limit there. You can check it out by visiting fooplot.com .

Jit Ganguly - 7 years, 5 months ago

Superb.

Soham Dibyachintan - 7 years, 5 months ago

awesome

niiyle dick - 7 years, 5 months ago

good....

Shubham Jain - 7 years, 4 months ago

Good solution!

Thành Trương Văn - 7 years, 3 months ago

I have done the same way

Ronak Agarwal - 6 years, 11 months ago

hey can you please elaborate the second step . I didn't got it.

Anurag Pandey - 6 years, 1 month ago

Log in to reply

Which step?

Pi Han Goh - 5 years, 3 months ago

Why is this different than evaluating 1 x 2 x 1 x 3 x 6 \dfrac{\sqrt{1-x^2}^x-\sqrt{1-x^3}}{x^6} ?

Trevor Arashiro - 5 years, 5 months ago

Log in to reply

I tried doing this but when I expand it, I end up with the same series (for the first 3 terms) but with an extra x 5 x^5 term. Am I wrong in thinking since lim x sin ( x ) x = 1 \displaystyle \lim_{x\rightarrow \infty} \dfrac{\sin(x)}{x}=1 that we can substitute x = sin ( x ) x=\sin(x) as x tends 0?

Trevor Arashiro - 5 years, 5 months ago

cos x 1 x 2 \cos x \ne \sqrt{1-x^2} .

Pi Han Goh - 5 years, 5 months ago

The one who created this question was awesome! 5 expansions in 1 question..Cool solution too!

Ayush Garg - 5 years, 3 months ago

Log in to reply

Glad that you liked it! =D

Pi Han Goh - 5 years, 3 months ago

did it the same way just in place of finding the expansion of sqrt(1-x^(3)) rationalized it nice one @Pi Han Goh sir

aryan goyat - 5 years ago

How x^6/8 will come?

Anshaj Shukla - 11 months, 2 weeks ago
Kenny Lau
Oct 11, 2015

I will omit the notation O ( x 7 ) O(x^7) and even " \cdots " to denote higher powers than x 6 x^6 , and even the limit sign.

1 x 6 [ cos x sin x 1 x 3 ] \quad\frac1{x^6}[\cos x^{\sin x}-\sqrt{1-x^3}]

= 1 x 6 [ ( 1 x 2 / 2 + x 4 / 24 x 6 / 720 ) sin x 1 x 3 ] =\frac1{x^6}[(1-x^2/2+x^4/24-x^6/720)^{\sin x}-\sqrt{1-x^3}]

= 1 x 6 [ k = 0 ( sin x choose k ) ( x 2 / 2 + x 4 / 24 x 6 / 720 ) k k = 0 ( 0.5 choose k ) ( x 3 ) k ] =\frac1{x^6}[\sum_{k=0}^{\infty}(\sin x\mbox{ choose }k)(-x^2/2+x^4/24-x^6/720)^k-\sum_{k=0}^{\infty}(0.5\mbox{ choose }k)(-x^3)^k]

= 1 x 6 [ 1 + sin x ( x 2 / 2 + x 4 / 24 ) + ( 1 / 2 ) sin x ( sin x 1 ) ( x 4 / 4 ) ( 1 0.5 x 3 0.125 x 6 ) ] =\frac1{x^6}[1+\sin x(-x^2/2+x^4/24)+(1/2)\sin x(\sin x-1)(x^4/4)-(1-0.5x^3-0.125x^6)]

= 1 x 6 [ 1 + ( x x 3 / 6 ) ( x 2 / 2 + x 4 / 24 ) + ( 1 / 2 ) x ( x 1 ) ( x 4 / 4 ) ( 1 0.5 x 3 0.125 x 6 ) ] =\frac1{x^6}[1+(x-x^3/6)(-x^2/2+x^4/24)+(1/2)x(x-1)(x^4/4)-(1-0.5x^3-0.125x^6)]

= 1 x 6 [ 1 + ( x 3 / 2 + x 5 / 24 + x 5 / 12 ) + ( x 6 / 8 x 5 / 8 ) ( 1 0.5 x 3 0.125 x 6 ) ] =\frac1{x^6}[1+(-x^3/2+x^5/24+x^5/12)+(x^6/8-x^5/8)-(1-0.5x^3-0.125x^6)]

= 1 x 6 [ ( 1 x 3 / 2 + x 6 / 8 ) ( 1 0.5 x 3 0.125 x 6 ) ] =\frac1{x^6}[(1-x^3/2+x^6/8)-(1-0.5x^3-0.125x^6)]

= 1 x 6 [ x 6 / 4 ] =\frac1{x^6}[x^6/4]

= 1 4 =\frac14

thank you for your solution! =D

Pi Han Goh - 5 years, 8 months ago

I used L Hospital rule,it gives the answer but the procedure is very long and time taking.

It was my first approach too but after finding the third derivative of the numerator I was pretty sure that at the sixth derivative the numerator would be much more complex and calculating it would take hours.

Anupam Nayak - 4 years, 11 months ago

Tried it didn't

t work

Aditya Sarkar - 2 years ago

I doubt that will work. Can you show your working? Thanks.

Pi Han Goh - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...