Summing Diminishing Cosines

Calculus Level 4

n = 1 cos ( 2 n ) 2 n = ? \large \sum_{n=1}^\infty \dfrac{\cos(2n)}{2^n} = \, ?

2 cos ( 2 ) 1 5 4 cos ( 2 ) \frac{2\cos(2)-1}{5-4\cos(2)} cos ( 2 ) 1 5 4 cos ( 2 ) \frac{\cos(2)-1}{5-4\cos(2)} 0 0 3 cos ( 2 ) 5 + 4 cos ( 2 ) \frac{3\cos(2)}{5+4\cos(2)} 1 1 2 cos ( 2 ) 1 5 3 cos ( 2 ) \frac{2\cos(2)-1}{5-3\cos(2)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Bar Hemo
Apr 14, 2016

n = 1 c o s ( 2 n ) 2 n = n = 1 e i 2 n + e i 2 n 2 1 2 n = n = 1 ( e i 2 2 ) n 1 2 + ( e i 2 2 ) n 1 2 = 1 2 e i 2 + 1 2 e i 2 1 = 2 c o s ( 2 ) 1 5 4 c o s ( 2 ) \sum_{n=1}^\infty \frac{cos(2n)}{2^n} =\sum_{n=1}^\infty \frac{e^{i2n}+e^{-i2n}}{2}\frac{1}{2^n}=\sum_{n=1}^\infty (\frac{e^{i2}}{2})^n\frac{1}{2}+(\frac{e^{-i2}}{2})^n\frac{1}{2}=\frac{1}{2-e^{i2}}+\frac{1}{2-e^{-i2}}-1=\frac{2cos(2)-1}{5-4cos(2)}

could you explain the step after summation .. im getting e^i2 extra in that

Dhruv Aggarwal - 5 years, 1 month ago

Log in to reply

Geometric progression

Bar Hemo - 5 years, 1 month ago
Harsh Poonia
Apr 18, 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...