CoSine-ception

Geometry Level 3

n = 0 9 cos ( 2 ) n \large \prod_{n=0}^{9}\cos (2^\circ)^n

Evaluate the expression above in terms of the sine function. Express each angle as a positive angle less than 18 0 180^\circ .

sin 4 6 1024 sin 1 \frac{\sin46^\circ}{1024\sin1^\circ} sin 5 6 1024 sin 1 \frac { -\sin { 56^\circ } }{ 1024\sin { 1^\circ } } sin 5 6 1024 sin 1 \frac{\sin56^\circ}{1024\sin1^\circ} sin 4 6 1024 sin 1 \frac{-\sin46^\circ}{1024\sin1^\circ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

n = 0 9 cos ( 2 ) n = cos 1 cos 2 cos 4 cos 8 cos 51 2 = sin 1 cos 1 cos 2 cos 4 cos 8 cos 51 2 sin 1 = sin 2 cos 2 cos 4 cos 8 cos 51 2 2 sin 1 = sin 4 cos 4 cos 8 cos 1 6 cos 51 2 4 sin 1 = sin 8 cos 8 cos 1 6 cos 3 2 cos 51 2 8 sin 1 = = sin 102 4 1024 sin 1 = sin 30 4 1024 sin 1 = sin 5 6 1024 sin 1 \begin{aligned} \prod_{n=0}^9 \cos (2^\circ)^n & = \cos 1^\circ \cos 2^\circ \cos 4^\circ \cos 8^\circ \cdots \cos 512^\circ \\ & = \frac {\blue{\sin 1^\circ}\cos 1^\circ \cos 2^\circ \cos 4^\circ \cos 8^\circ \cdots \cos 512^\circ}{\blue{\sin 1^\circ}} \\ & = \frac {\blue{\sin 2^\circ}\cos 2^\circ \cos 4^\circ \cos 8^\circ \cdots \cos 512^\circ}{\blue 2 \sin 1^\circ} \\ & = \frac {\blue{\sin 4^\circ}\cos 4^\circ \cos 8^\circ \cos 16^\circ \cdots \cos 512^\circ}{\blue 4 \sin 1^\circ} \\ & = \frac {\blue{\sin 8^\circ}\cos 8^\circ \cos 16^\circ \cos 32^\circ \cdots \cos 512^\circ}{\blue 8 \sin 1^\circ} \\ & = \quad \cdots \quad \cdots \quad \cdots \\ & = \frac {\sin 1024^\circ}{1024 \sin 1^\circ} = \frac {\sin 304^\circ}{1024 \sin 1^\circ} = \boxed{\frac {- \sin 56^\circ}{1024 \sin 1^\circ}} \end{aligned}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...