Cosinecos

Geometry Level 2

tan [ cos 1 ( sin ( cos 1 x ) ) + sin 1 ( cos ( sin 1 x ) ) 2 ] = ? \tan \left[ \dfrac{\cos^{-1} \left( \sin \left( \cos^{-1}x \right) \right) + \sin^{-1} \left( \cos \left( \sin^{-1}x \right) \right)}{2} \right]= \, ?

Clarification: sin 1 x [ 0 , π 2 ] \sin^{-1}x \in \left[ 0, \frac{\pi}{2} \right] .


The answer is 1.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Gautam Sharma
Mar 31, 2016

A = cos 1 ( sin ( cos 1 x ) ) + sin 1 ( cos ( sin 1 x ) ) A=\cos^{-1} \left( \sin \left( \cos^{-1}x \right) \right) + \sin^{-1} \left( \cos \left( \sin^{-1}x \right) \right)

cos 1 ( sin ( cos 1 x ) ) = π 2 s i n 1 ( sin ( cos 1 x ) ) = π 2 c o s 1 x \cos^{-1} \left( \sin \left( \cos^{-1}x \right) \right)=\dfrac{\pi}{2}-sin^{-1}\left( \sin \left( \cos^{-1}x \right) \right)=\dfrac{\pi}{2}-cos^{-1}x

Similarily

sin 1 ( cos ( sin 1 x ) ) = π 2 c o s 1 ( cos ( sin 1 x ) ) = π 2 s i n 1 x \sin^{-1} \left( \cos \left( \sin^{-1}x \right) \right)=\dfrac{\pi}{2}-cos^{-1}\left( \cos \left( \sin^{-1}x \right) \right) =\dfrac{\pi}{2}-sin^{-1}x

Hence adding both we get

A = π s i n 1 x c o s 1 x A=\pi -sin^{-1}x-cos^{-1}x

also s i n 1 x + c o s 1 x = π 2 sin^{-1}x+cos^{-1}x=\dfrac{\pi}{2}

A = π 2 A=\dfrac{\pi}{2}

t a n ( A 2 ) = 1 tan(\dfrac{A}{2})=1

Note- sin 1 x [ 0 , π 2 ] \sin^{-1}x \in \left[ 0, \frac{\pi}{2} \right] is an important condition for 2nd and 3rd step above

Let { sin 1 x = α sin α = x cos 1 x = β cos β = x \begin{cases} \sin^{-1} x = \alpha & \Rightarrow \sin \alpha = x \\ \cos^{-1} x = \beta & \Rightarrow \cos \beta = x \end{cases}

sin α = cos β = x cos ( π 2 α ) = cos β π 2 α = β α + β = π 2 \begin{aligned} \Rightarrow \sin \alpha & = \cos \beta = x \\ \cos \left(\frac{\pi}{2}-\alpha \right) & = \cos \beta \\ \Rightarrow \frac{\pi}{2}-\alpha & = \beta \\ \alpha + \beta & = \frac{\pi}{2} \end{aligned}

y = tan [ cos 1 ( sin ( cos 1 x ) ) + sin 1 ( cos ( sin 1 x ) ) 2 ] = tan [ cos 1 ( sin β ) + sin 1 ( cos α ) 2 ] = tan [ cos 1 ( cos ( π 2 β ) ) + sin 1 ( sin ( π 2 α ) ) 2 ] = tan [ cos 1 ( cos α ) + sin 1 ( sin β ) 2 ] = tan [ α + β 2 ] = tan π 4 = 1 \begin{aligned} y & = \tan \left[ \frac{\cos^{-1} \left(\sin (\cos^{-1} x) \right) + \sin^{-1} \left(\cos (\sin^{-1} x) \right)}{2} \right] \\ & = \tan \left[ \frac{\cos^{-1} \left(\sin \beta \right) + \sin^{-1} \left(\cos \alpha \right)}{2} \right] \\ & = \tan \left[ \frac{\cos^{-1} \left(\cos \left(\frac{\pi}{2} - \beta \right) \right) + \sin^{-1} \left(\sin \left( \frac{\pi}{2} - \alpha \right)\right)}{2} \right] \\ & = \tan \left[ \frac{\cos^{-1} \left(\cos \alpha \right) + \sin^{-1} \left(\sin \beta \right)}{2} \right] \\ & = \tan \left[ \frac{\alpha + \beta}{2} \right] \\ & = \tan \frac{\pi}{4} = \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...