Cosines Abound

Geometry Level 4

Let a n = cos ( π n ) cos ( 2 π n ) cos ( n π n ) a_n = \cos \left( \dfrac \pi n \right)\cos \left( \dfrac {2\pi} n \right)\cdots \cos \left( \dfrac {n\pi} n \right) .

If the absolute value of the infinite series a 1 + a 2 + a 3 + a_1+a_2+a_3+ \cdots is p q \frac pq , where p p and q q are coprime positive integers, find p + q p+q .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alex Delhumeau
Jun 5, 2017

Let us write out a few of the terms of a n a_n :

a 1 = m = 1 1 cos ( m 1 π ) = cos 1 π 1 = 1. a_1 = \displaystyle\prod_{m=1}^{1} \cos{(\frac{m}{1}*\pi}) = \cos{\frac{1\pi}{1}} = -1. a 2 = m = 1 2 cos ( m 2 π ) = cos π 2 cos 2 π 2 = 0 1 = 0. a_2 = \displaystyle\prod_{m=1}^{2} \cos{(\frac{m}{2}*\pi}) = \cos{\frac{\pi}{2}} * \cos{\frac{2\pi}{2}} = 0 * -1 = 0. a 3 = m = 1 3 cos ( m 3 π ) = cos π 3 cos 2 π 3 cos 3 π 3 = 1 2 1 2 1 = 1 4 . a_3 = \displaystyle\prod_{m=1}^{3} \cos{(\frac{m}{3}*\pi}) = \cos{\frac{\pi}{3}} * \cos{\frac{2\pi}{3}} * \cos{\frac{3\pi}{3}} = \frac{1}{2} * -\frac{1}{2} * -1 = \frac{1}{4}. a 3 = m = 1 4 cos ( m 4 π ) = cos π 4 cos 2 π 4 cos 3 π 4 cos 4 π 4 = 1 2 0 1 2 1 = 0. a_3 = \displaystyle\prod_{m=1}^{4} \cos{(\frac{m}{4}*\pi}) = \cos{\frac{\pi}{4}} * \cos{\frac{2\pi}{4}} * \cos{\frac{3\pi}{4}} * \cos{\frac{4\pi}{4}} = \frac{1}{\sqrt{2}} * 0 * -\frac{1}{\sqrt{2}} * -1 = 0.

It is clear that every even term a 2 , a 4 , . . . , a 2 n = 0 a_2, a_4, ... , a_{2n} = 0 because they contain cos π 2 = 0 \cos{\frac{\pi}{2}} = 0 at some point in their expansion. Thus we are left with only the odd terms to consider: a 1 , a 3 , . . . , a 2 n + 1 a_1, a_3, ... , a_{2n+1} . Seeing the first two of these, a 1 = 1 a_1 = -1 and a 3 = 1 4 a_3 = \frac{1}{4} , we suspect that they form a geometric series with common ratio r = 1 4 r = -\frac{1}{4} .

Looking at a 5 a_5 in particular, we seek to prove our suspicion that cos π 5 cos 2 π 5 cos 3 π 5 cos 4 π 5 cos 5 π 5 = 1 16 . \cos{\frac{\pi}{5}} * \cos{\frac{2\pi}{5}} * \cos{\frac{3\pi}{5}} * \cos{\frac{4\pi}{5}} * \cos{\frac{5\pi}{5}} = -\frac{1}{16}. To this end, we multiple top and bottom by sin π 5 \sin{\frac{\pi}{5}} and seek to simplify:

sin π 5 cos π 5 cos 2 π 5 cos 3 π 5 cos 4 π 5 cos 5 π 5 sin π 5 = \frac{\sin{\frac{\pi}{5}} * \cos{\frac{\pi}{5}} * \cos{\frac{2\pi}{5}} * \cos{\frac{3\pi}{5}} * \cos{\frac{4\pi}{5}} * \cos{\frac{5\pi}{5}}}{\sin{\frac{\pi}{5}}} = sin 2 π 5 cos 2 π 5 cos 3 π 5 cos 4 π 5 cos 5 π 5 2 sin π 5 = \frac{\sin{\frac{2\pi}{5}} * \cos{\frac{2\pi}{5}} * \cos{\frac{3\pi}{5}} * \cos{\frac{4\pi}{5}} * \cos{\frac{5\pi}{5}}}{2*\sin{\frac{\pi}{5}}} = sin 4 π 5 cos 3 π 5 cos 4 π 5 cos 5 π 5 4 sin π 5 = \frac{\sin{\frac{4\pi}{5}} * \cos{\frac{3\pi}{5}} * \cos{\frac{4\pi}{5}} * \cos{\frac{5\pi}{5}}}{4*\sin{\frac{\pi}{5}}} = sin 8 π 5 cos 3 π 5 cos 5 π 5 8 sin π 5 = \frac{\sin{\frac{8\pi}{5}} * \cos{\frac{3\pi}{5}} * \cos{\frac{5\pi}{5}}}{8*\sin{\frac{\pi}{5}}} = sin 3 π 5 cos 3 π 5 cos 5 π 5 8 sin π 5 = \frac{-\sin{\frac{3\pi}{5}} * \cos{\frac{3\pi}{5}} * \cos{\frac{5\pi}{5}}}{8*\sin{\frac{\pi}{5}}} = sin 6 π 5 cos 5 π 5 16 sin π 5 = \frac{-\sin{\frac{6\pi}{5}} * \cos{\frac{5\pi}{5}}}{16*\sin{\frac{\pi}{5}}} = sin 6 π 5 16 sin π 5 = \frac{\sin{\frac{6\pi}{5}}}{16*\sin{\frac{\pi}{5}}} = sin π 5 16 sin π 5 = \frac{-\sin{\frac{\pi}{5}}}{16*\sin{\frac{\pi}{5}}} = 1 16 . -\frac{1}{16}.

Using this same method finds a 7 = 1 64 , a 9 = 1 256 , . . . a_7 = \frac{1}{64}, a_9 = -\frac{1}{256}, ... and so on and so forth.

Thus we have found i = 1 a i = 1 + 1 4 1 16 + 1 64 1 256 . . . = 1 1 ( 1 4 ) = 1 5 4 = 4 5 = 4 5 . \displaystyle | \sum_{i=1}^{\infty} a_i | = | -1 + \frac{1}{4} - \frac{1}{16} + \frac{1}{64} - \frac{1}{256} - ... | = | \frac{-1}{1-(-\frac{1}{4})} | = | \frac{-1}{\frac{5}{4}} | = | -\frac{4}{5} | = \frac{4}{5}. And 4 + 5 = 9 4 + 5 = \boxed{9} .

Awesome question did the same !! :-)

Ayush Sharma - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...