Cosines Series

Geometry Level 4

k = 1 n cos 2 k π 2 n + 1 = A B \large \sum\limits_{k=1}^{n} \cos \frac{2 k \pi}{2 n + 1} = \frac{-A}{B}

If A A and B B are coprime positive integers, what is the value of A + B ? A + B ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Mar 15, 2016

Let S = cos 2 π 2 n + 1 + cos 4 π 2 n + 1 + cos 6 π 2 n + 1 + \large\mathbf{S}=\cos \dfrac{2\pi}{2n+1} +\cos \dfrac{4\pi}{2n+1}+\cos \dfrac{6\pi}{2n+1}+\cdots Multiplying both sides by 2 sin π 2 n + 1 \color{#007fff}{2~\sin \dfrac{\pi}{2n+1}} and using the identity 2 cos A sin B = sin ( A + B ) sin ( A B ) \color{#007fff}{2~\cos A~\sin B=\sin (A+B)-\sin(A-B)} .

2 sin π 2 n + 1 S = ( sin 3 π 2 n + 1 sin π 2 n + 1 ) + ( sin 5 π 2 n + 1 sin 3 π 2 n + 1 ) + ( sin 7 π 2 n + 1 sin 5 π 2 n + 1 ) + ( sin ( 2 n + 1 ) π 2 n + 1 sin ( 2 n 1 ) π 2 n + 1 ) \begin{aligned} 2~\sin \dfrac{\pi}{2n+1}\mathbf{S} & =\left(\cancel{\color{#3D99F6}{\sin \dfrac{3\pi}{2n+1}}}-\sin \dfrac{\pi}{2n+1}\right)\\&+\left(\cancel{\color{#D61F06}{\sin \dfrac{5\pi}{2n+1}}}-\cancel{\color{#3D99F6}{\sin \dfrac{3\pi}{2n+1}}}\right)\\&+\left(\cancel{\color{#456461}{\sin \dfrac{7\pi}{2n+1}}}-\cancel{\color{#D61F06}{\sin \dfrac{5\pi}{2n+1}}}\right) \\&\cdots\\&\cdots\\&\cdots\\&+\left(\sin \dfrac{\cancel{(2n+1)}\pi}{\cancel{2n+1}}-\cancel{\color{#EC7300}{\sin \dfrac{(2n-1)\pi}{2n+1}}}\right)\end{aligned} A T e l e s c o p i c S e r i e s \large\mathbf{\color{#302B94}{A~Telescopic ~Series}} = 0 sin π 2 n + 1 \large =0- \sin \dfrac{\pi}{2n+1}

( sin π = 0 ) \large (\because~ \sin \pi=0)

S = 1 2 \implies \Large \mathbf{S}=\dfrac{-1}{2} 1 + 2 = 3 \Huge\therefore~1+2=\color{#456461}{\boxed{\color{#EC7300}{\boxed{\color{#69047E}{\Huge 3}}}}}

Good and elegant solution without using complex numbers!!!!!

Salz City - 5 years, 3 months ago
Harsh Khatri
Mar 14, 2016

Consider the equation x 2 n + 1 = 1 x^{2n+1}=1 .

Solutions of the above equation of are of the form x = e i 2 m π 2 n + 1 , m = { 0 , 1 , 2 , , 2 n } x = e^{i\frac{2m\pi}{2n+1}}, m=\{0,1,2,\ldots, 2n\} .

Sum of roots of the above equation by using Vieta's gives:

m = 0 2 n e i 2 m π 2 n + 1 = 0 \displaystyle \sum_{m=0}^{2n} e^{i\frac{2m\pi}{2n+1}} = 0

Equating real parts on both sides we get:

m = 0 2 n cos ( 2 m π 2 n + 1 ) = 0 \displaystyle \sum_{m=0}^{2n} \cos\bigg(\frac{2m\pi}{2n+1}\bigg)= 0

1 + m = 1 2 n cos ( 2 m π 2 n + 1 ) = 0 \displaystyle \Rightarrow 1 + \displaystyle \sum_{m=1}^{2n} \cos\bigg(\frac{2m\pi}{2n+1}\bigg) = 0

Now, since the roots of the polynomial are symmetrically distributed about the real axis, we conclude:

m = 1 2 n cos ( 2 m π 2 n + 1 ) = 2 × m = 1 n cos ( 2 m π 2 n + 1 ) \displaystyle \sum_{m=1}^{2n} \cos\bigg(\frac{2m\pi}{2n+1}\bigg) = 2\times \displaystyle \sum_{m=1}^{n} \cos\bigg(\frac{2m\pi}{2n+1}\bigg)

1 + 2 × m = 1 n cos ( 2 m π 2 n + 1 ) = 0 \displaystyle \Rightarrow 1 + 2\times \displaystyle \sum_{m=1}^{n} \cos\bigg(\frac{2m\pi}{2n+1}\bigg) = 0

m = 1 n cos ( 2 m π 2 n + 1 ) = 1 2 = A B \displaystyle \Rightarrow \displaystyle \sum_{m=1}^{n} \cos\bigg(\frac{2m\pi}{2n+1} \bigg) = \frac{-1}{2} = \frac{-A}{B}

A = 1 , B = 2 \displaystyle \Rightarrow A = 1, B = 2

A + B = 1 + 2 = 3 \displaystyle \Rightarrow A + B = 1 + 2 = \boxed{3}

Otto Bretscher
Mar 15, 2016

Taking the Dirichlet Kernel k = 1 n cos ( k x ) = sin ( ( n + 1 2 ) x ) 2 sin ( x 2 ) 1 2 \sum_{k=1}^{n}\cos(kx)=\frac{\sin\left((n+\frac{1}{2})x\right)}{2\sin(\frac{x}{2})}-\frac{1}{2} for x = 2 π 2 n + 1 x=\frac{2\pi}{2n+1} produces sin ( π ) . . . 1 2 \frac{\sin(\pi)}{...}-\frac{1}{2} , so that the answer is 3 \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...