Cot in A.P.

Geometry Level 3

In a triangle ABC , if cot A , cot B , cot C \cot A , \cot B , \cot C are in A.P. then a 2 , b 2 , c 2 a^2 , b^2 , c^2 are in

Also try : Sine in A.P.

GP AP HP None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ananya J
Jun 5, 2014

C o t A = C o s A S i n A , C o t B = C o s B S i n B , C o t C = C o s C S i n C B y u s i n g C o s i n e R u l e a n d S i n e R u l e w e g e t , C o t A = b 2 + c 2 a 2 2 b c a × 2 R C o t B = a 2 + c 2 b 2 2 a c b × 2 R C o t C = a 2 + b 2 c 2 2 a b c × 2 R H e r e , 2 R i s t h e c i r c u m r a d i u s a n d a , b , c a r e s i d e s o p p o s i t e t o a n g l e s A , B , C r e s p e c t i v e l y . S i n c e , C o t A , C o t B , C o t C a r e i n A . P . , C o t A + C o t C = 2 C o t B ( b 2 + c 2 a 2 ) + ( a 2 + b 2 c 2 ) = 2 ( a 2 + c 2 b 2 ) 2 b 2 = 2 a 2 + 2 c 2 2 b 2 4 b 2 = 2 a 2 + 2 c 2 2 b 2 = a 2 + c 2 T h e r e f o r e , a 2 , b 2 , c 2 a r e i n A . P . CotA=\frac { CosA }{ SinA } ,CotB=\frac { CosB }{ SinB } ,CotC=\frac { CosC }{ SinC } \\ \\ \\ By\quad using\quad Cosine\quad Rule\quad and\quad Sine\quad Rule\quad we\quad get,\\ \\ \\ CotA=\frac { { b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 } }{ 2bca } \times 2R\\ CotB=\frac { { a }^{ 2 }+{ c }^{ 2 }-{ b }^{ 2 } }{ 2acb } \times 2R\\ CotC=\frac { a^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }{ 2abc } \times 2R\\ Here,2R\quad is\quad the\quad circumradius\quad and\quad a,b,c\quad are\quad sides\quad opposite\quad to\quad angles\quad A,B,C\quad respectively.\\ \\ \\ Since,CotA,CotB,CotC\quad are\quad in\quad A.P.,\\ \\ CotA+CotC=2CotB\\ \\ ({ b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 })+({ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })=2({ a }^{ 2 }+{ c }^{ 2 }-{ b }^{ 2 })\\ 2{ b }^{ 2 }=2{ a }^{ 2 }+2{ c }^{ 2 }-2{ b }^{ 2 }\\ 4{ b }^{ 2 }=2{ a }^{ 2 }+2{ c }^{ 2 }\\ 2{ b }^{ 2 }={ a }^{ 2 }+{ c }^{ 2 }\\ \\ Therefore,{ a }^{ 2 },{ b }^{ 2 },{ c }^{ 2 }\quad are\quad in\quad A.P.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...