"cot" in the act!

Calculus Level 5

0 π cot 1 ( cot 5 x ) cot x d x = π a ( b ln c d ln a + ln ( f + g a ) ) \int_0^\pi \cot^{-1}\left(\cot^5 x\right) \cot x\ dx = \frac \pi a \left(b\ln c - d\ln a+ \ln(f+g\sqrt a)\right)

The equation above holds true for positive integers a a , b b , c c , d d , f f , and g g , where a a and c c primes. Find a + b + c + d + f + g a+ b+c+d+f +g .

Problem UP.128 from Romanian Mathematical Magazine, Summer Edition


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 11, 2018

This one needs a couple of technical integrals: I n = 0 u n d u u 10 + 1 = 1 10 π c o s e c ( ( n + 1 ) π 10 ) 0 n 8 K α = 1 u α 1 u 1 = 1 2 H 1 2 ( 1 + α ) ln 2 1 < α < 1 \begin{aligned} I_n & = \; \int_0^\infty \frac{u^n\,du}{u^{10} + 1} \; = \; \tfrac{1}{10}\pi \,\mathrm{cosec}\left(\tfrac{(n+1)\pi}{10}\right) \hspace{2cm} 0 \le n \le 8 \\ K_\alpha & = \; \int_1^\infty \frac{u^\alpha-1}{u-1} \; = \; -\tfrac12H_{-\frac12(1+\alpha)} - \ln2 \hspace{2cm} -1 < \alpha < 1 \end{aligned} The first of these can be proved by fairly straightforward contour integration, while the second is easily derivable from standard integrals about the generalised Harmonic number function.

If we define F ( t ) = 0 π cot 1 ( t cot 5 x ) cot x d x = 2 0 1 2 π cot 1 ( t cot 5 x ) cot x d x F(t) \; = \; \int_0^\pi \cot^{-1}\big(t \cot^5x\big)\, \cot x\,dx \; = \; 2\int_0^{\frac12\pi} \cot^{-1}\big(t\cot^5x\big)\,\cot x\,dx then F ( t ) 0 F(t) \to 0 as t t \to \infty and F ( t ) = 2 0 1 2 π cot 6 x d x t 2 cot 10 x + 1 = 2 0 1 2 π tan 4 x d x tan 10 x + t 2 = 2 0 u 4 d u ( u 2 + 1 ) ( u 10 + t 2 ) F'(t) \; = \; -2\int_0^{\frac12\pi} \frac{\cot^6x\,dx}{t^2\cot^{10}x + 1} \; = \; -2\int_0^{\frac12\pi} \frac{\tan^4x\,dx}{\tan^{10}x + t^2} \; = \; -2\int_0^\infty \frac{u^4\,du}{(u^2+1)(u^{10}+t^2)} Expanding this last integrand by partial fractions we see that F ( t ) = 2 t 2 1 0 { 1 u 2 + 1 u 8 u 6 + u 4 t 2 u 2 + t 2 u 10 + t 2 } d u = 2 t 2 1 [ 1 2 π t 1 5 I 8 + t 3 5 I 6 t 1 I 4 + t 3 5 I 2 t 1 5 I 0 ] = π 5 ( t 2 1 ) [ t 1 5 c o s e c ( 9 π 10 ) t 3 5 c o s e c ( 7 π 10 ) + t 1 t 3 5 c o s e c ( 3 π 10 ) + t 1 5 c o s e c ( π 10 ) 5 ] = π 5 ( t 2 1 ) [ ( 1 + 5 ) ( t 1 5 + t 1 5 ) + ( 1 5 ) ( t 3 5 + t 3 5 ) + t 1 5 ] = π 5 ( t 2 1 ) [ ( 1 + 5 ) ( t 1 5 1 + t 1 5 1 ) + ( 1 5 ) ( t 3 5 1 + t 3 5 1 ) ] π 5 t ( t + 1 ) \begin{aligned} F'(t) & = \; -\frac{2}{t^2-1}\int_0^\infty \left\{ \frac{1}{u^2+1} - \frac{u^8 - u^6 + u^4 - t^2u^2 + t^2}{u^{10} + t^2}\right\}\,du \\ & = \; -\frac{2}{t^2-1}\left[ \tfrac12\pi - t^{-\frac15}I_8 + t^{-\frac35}I_6 - t^{-1}I_4 + t^{\frac35}I_2 - t^{\frac15}I_0\right] \\ & = \; \frac{\pi}{5(t^2-1)}\left[ t^{-\frac15}\mathrm{cosec}\left(\tfrac{9\pi}{10}\right) - t^{-\frac35}\mathrm{cosec}\left(\tfrac{7\pi}{10}\right) + t^{-1} - t^{\frac35} \mathrm{cosec}\left(\tfrac{3\pi}{10}\right) + t^{\frac15}\mathrm{cosec}\left(\tfrac{\pi}{10}\right) - 5\right] \\ & = \; \frac{\pi}{5(t^2-1)}\left[(1 +\sqrt{5})\big(t^{\frac15} + t^{-\frac15}\big) + (1 - \sqrt{5})\big(t^{\frac35} + t^{-\frac35}\big) + t^{-1} - 5\right] \\ & = \; \frac{\pi}{5(t^2-1)}\left[(1 + \sqrt{5})\big(t^{\frac15} - 1 + t^{-\frac15} - 1\big) + (1 - \sqrt{5})\big(t^{\frac35} - 1 + t^{-\frac35} - 1\big)\right] - \frac{\pi}{5t(t+1)} \end{aligned} so the desired integral is F ( 1 ) = 1 F ( t ) d t = 1 5 π [ ( 1 + 5 ) ( K 1 5 + K 1 5 ) + ( 1 5 ) ( K 3 5 + K 3 5 ) ] + 1 5 π ln 2 = 1 10 π [ ( 1 + 5 ) ( H 3 5 + H 2 5 ) + ( 1 5 ) ( H 4 5 + H 1 5 ) ] + π ln 2 = π 5 ln [ 64 125 ( 25 + 11 5 ) ] = π 5 [ 4 ln 2 3 ln 5 + ln ( 25 + 11 5 ) ] \begin{aligned} F(1) & = \; -\int_1^\infty F'(t)\,dt \; = \; -\tfrac15\pi\left[(1+\sqrt{5})\left(K_{\frac15} + K_{-\frac15}\right) + (1 - \sqrt{5})\left(K_{\frac35} + K_{-\frac35}\right)\right] + \tfrac15\pi\ln2 \\ & = \; \tfrac{1}{10}\pi\left[(1 + \sqrt{5})\left(H_{-\frac35} + H_{-\frac25}\right) + (1 - \sqrt{5})\left(H_{-\frac45} + H_{-\frac15}\right)\right] + \pi\ln2 \\ & = \; \tfrac{\pi}{5}\ln\left[\tfrac{64}{125}(25 + 11\sqrt{5})\right] \; = \; \tfrac{\pi}{5}\Big[4\ln2 - 3\ln5 + \ln(25 + 11\sqrt{5})\Big] \end{aligned} giving the answer 5 + 4 + 2 + 3 + 25 + 11 = 50 5 + 4 + 2 + 3 + 25 + 11 = \boxed{50} .

(N.B. RMM notified)


It is worth noting that this integral can be much more elegantly expressed, since 64 125 ( 25 + 11 5 ) = ( 5 + 5 5 ) 5 \tfrac{64}{125}(25 + 11\sqrt{5}) \; = \; \left(\frac{5 + \sqrt{5}}{5}\right)^5 and hence F ( 1 ) = π ln ( 5 + 5 5 ) F(1) \; = \; \pi \ln\left(\frac{5+\sqrt{5}}{5}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...