The equation above holds true for positive integers , , , , , and , where and primes. Find .
Problem UP.128 from Romanian Mathematical Magazine, Summer Edition
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This one needs a couple of technical integrals: I n K α = ∫ 0 ∞ u 1 0 + 1 u n d u = 1 0 1 π c o s e c ( 1 0 ( n + 1 ) π ) 0 ≤ n ≤ 8 = ∫ 1 ∞ u − 1 u α − 1 = − 2 1 H − 2 1 ( 1 + α ) − ln 2 − 1 < α < 1 The first of these can be proved by fairly straightforward contour integration, while the second is easily derivable from standard integrals about the generalised Harmonic number function.
If we define F ( t ) = ∫ 0 π cot − 1 ( t cot 5 x ) cot x d x = 2 ∫ 0 2 1 π cot − 1 ( t cot 5 x ) cot x d x then F ( t ) → 0 as t → ∞ and F ′ ( t ) = − 2 ∫ 0 2 1 π t 2 cot 1 0 x + 1 cot 6 x d x = − 2 ∫ 0 2 1 π tan 1 0 x + t 2 tan 4 x d x = − 2 ∫ 0 ∞ ( u 2 + 1 ) ( u 1 0 + t 2 ) u 4 d u Expanding this last integrand by partial fractions we see that F ′ ( t ) = − t 2 − 1 2 ∫ 0 ∞ { u 2 + 1 1 − u 1 0 + t 2 u 8 − u 6 + u 4 − t 2 u 2 + t 2 } d u = − t 2 − 1 2 [ 2 1 π − t − 5 1 I 8 + t − 5 3 I 6 − t − 1 I 4 + t 5 3 I 2 − t 5 1 I 0 ] = 5 ( t 2 − 1 ) π [ t − 5 1 c o s e c ( 1 0 9 π ) − t − 5 3 c o s e c ( 1 0 7 π ) + t − 1 − t 5 3 c o s e c ( 1 0 3 π ) + t 5 1 c o s e c ( 1 0 π ) − 5 ] = 5 ( t 2 − 1 ) π [ ( 1 + 5 ) ( t 5 1 + t − 5 1 ) + ( 1 − 5 ) ( t 5 3 + t − 5 3 ) + t − 1 − 5 ] = 5 ( t 2 − 1 ) π [ ( 1 + 5 ) ( t 5 1 − 1 + t − 5 1 − 1 ) + ( 1 − 5 ) ( t 5 3 − 1 + t − 5 3 − 1 ) ] − 5 t ( t + 1 ) π so the desired integral is F ( 1 ) = − ∫ 1 ∞ F ′ ( t ) d t = − 5 1 π [ ( 1 + 5 ) ( K 5 1 + K − 5 1 ) + ( 1 − 5 ) ( K 5 3 + K − 5 3 ) ] + 5 1 π ln 2 = 1 0 1 π [ ( 1 + 5 ) ( H − 5 3 + H − 5 2 ) + ( 1 − 5 ) ( H − 5 4 + H − 5 1 ) ] + π ln 2 = 5 π ln [ 1 2 5 6 4 ( 2 5 + 1 1 5 ) ] = 5 π [ 4 ln 2 − 3 ln 5 + ln ( 2 5 + 1 1 5 ) ] giving the answer 5 + 4 + 2 + 3 + 2 5 + 1 1 = 5 0 .
(N.B. RMM notified)
It is worth noting that this integral can be much more elegantly expressed, since 1 2 5 6 4 ( 2 5 + 1 1 5 ) = ( 5 5 + 5 ) 5 and hence F ( 1 ) = π ln ( 5 5 + 5 )