Cotangent Rule

Geometry Level pending

If x x , y y and z z are different angles of a triangle. What the value of:

cot ( x ) cot ( y ) + cot ( y ) cot ( z ) + cot ( x ) cot ( z ) ? \cot(x)\cot(y)+\cot(y)\cot(z)+\cot(x)\cot(z)?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmad Saad
Apr 18, 2017

@DSCAS G , this problem is quite easy as an mcq question by just taking the triangle as equilateral.

So its best at subjective question

Md Zuhair - 4 years, 1 month ago
Chew-Seong Cheong
Apr 18, 2017

If x x , y y and z z are angles of a triangle, then:

tan x + tan y + tan z = tan x tan y tan z Dividing both sides by tan x tan y tan z tan x tan x tan y tan z + tan y tan x tan y tan z + tan z tan x tan y tan z = 1 1 tan y tan z + 1 tan x tan z + 1 tan x tan y = 1 cot y cot z + cot x cot z + cot x cot y = 1 \begin{aligned} \tan x + \tan y + \tan z & = \tan x \tan y \tan z & \small \color{#3D99F6} \text{Dividing both sides by } \tan x \tan y \tan z \\ \frac {\tan x}{\tan x \tan y \tan z } + \frac {\tan y}{\tan x \tan y \tan z } + \frac {\tan z}{\tan x \tan y \tan z } & = 1 \\ \frac 1{\tan y \tan z } + \frac 1{\tan x \tan z } + \frac 1{\tan x \tan y} & = 1 \\ \cot y \cot z + \cot x \cot z + \cot x \cot y & = \boxed{1} \end{aligned}

Don't you think the triangle should be non - oblique for the solution to be legitimate ?

Aditya Sky - 4 years, 1 month ago

Log in to reply

tan x + tan y + tan z = tan x tan y tan z \tan x + \tan y + \tan z = \tan x \tan y \tan z is true for all triangles.

Chew-Seong Cheong - 4 years, 1 month ago

That's true. What I'm saying is that if the triangle is oblique, then one of the tan ( A ) \tan(A) , tan ( B ) \tan(B) or tan ( C ) \tan(C) would be undefined, in which case you can't divide the equation by tan ( A ) t a n ( B ) t a n ( C ) \tan(A) \cdot tan(B) \cdot tan(C) .

Aditya Sky - 4 years, 1 month ago

Log in to reply

I don't get you. tan θ ( , ) \tan \theta \in (-\infty, \infty) for θ ( 0 , π ) \theta \in (0,\pi) , which angle is undefined? Just suggest three valid angles to disprove it, if you can. Of course, angle of a real triangle cannot be larger than π \pi .

Chew-Seong Cheong - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...