Cotangent Trigonometry

Geometry Level 4

In A B C \triangle{ABC} , B C = a cm , A C = b cm , BC=a \text{ cm}, AC=b \text{ cm}, and A B = c cm . AB=c \text{ cm}. Given that a 2 + b 2 c 2 = 2011 \frac{a^2+b^2}{c^2}=2011 , find the value of

cot C cot A + cot B . \frac{\cot C}{\cot A+\cot B}.


This problem is not original.


The answer is 1005.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dinesh Chavan
Sep 6, 2014

OK, We have to find the value of cot C cot A + cot B \frac{\cot C}{\cot A + \cot B} Let us now simplify the numerator and denominator and bring them in terms of sin , cos \sin,\cos . N u m e r a t o r cos C sin C \mathscr{Numerator} ⇒ \frac{\cos C}{\sin C} D e n o m i n a t o r cos A sin A + cos B sin B sin C sin A × sin B \mathscr{Denominator} ⇒ \frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}⇒\frac{\sin {C}}{\sin A \times \sin B}

OK, Now we come to our simplified version of question that

cot C cot A + cot B = ( sin A sin C ) × ( sin A sin C ) × cos C \frac{\cot C }{ \cot A + \cot B} = (\frac{\sin A}{\sin C } ) \times (\frac{\sin A}{\sin C} ) \times \cos C

Now, by sine rule we know that sin A sin C = a c \frac{\sin A}{\sin C}=\frac{a}{c} , sin B sin C = b c \frac{\sin B}{\sin C}=\frac{b}{c} . And from cosine rule cos C = a 2 + b 2 c 2 2 × a × b \cos C=\frac{a^2+b^2-c^2}{2 \times a \times b} . Therefore Plugging all these results in our result, we get;;;

( sin A sin C ) × ( sin A sin C ) × cos C = a b ( a 2 + b 2 c 2 ) 2 a b c 2 = 2011 2 1 2 = 1005 (\frac{\sin A}{\sin C } ) \times (\frac{\sin A}{\sin C} ) \times \cos C =\frac{ab(a^2+b^2-c^2)}{2abc^2}=\frac{2011}{2}-\frac{1}{2}=1005

@Dinesh Chavan To create brackets which wrap around the fraction, use \text{\left(} and \text{\right)} .

Victor Loh - 6 years, 9 months ago

Log in to reply

Thanks for suggestion

Dinesh Chavan - 6 years, 9 months ago

Exactly the same as I did!! BTW, nice problem!

Kartik Sharma - 6 years, 9 months ago

Log in to reply

Thank you :)

Victor Loh - 6 years, 9 months ago

Log in to reply

Moreover, I like your avatar too, I am a big fan of geometry dash too!! Very addicting!

Kartik Sharma - 6 years, 9 months ago
Varun Narayan
Sep 9, 2014

SinA/a=SinB/b=SinC/c=k and CosA=(b^2+c^2-a^2)/2bc and so on then put in the question and get a easy product which is ((a^2+b^2)-c^2)/2c^2. then put the given values in equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...