Given that and are positive numbers satisfying
and
.
And if the minimum value of is equal to , where and are coprime positive integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
To solve this problem we can start by substituting the first equation into the second and then solve for the value of y . Substituting the two equations gives us cot ( 4 π + y ) + cot y = 2 . We can now solve this equation from [ 0 , 2 π ) :
cot ( 4 π + y ) + cot y = 2 ⇒ tan ( 4 π + y ) 1 + cot y = 2 ⇒ tan 4 π + t a n y 1 − tan 4 π tan y + cot y = 2 ⇒ 1 + tan y 1 − tan y + cot y = 2 ⇒ 1 + tan y 1 − tan y + cot y + cot y tan y = 2 ⇒ 1 + tan y 2 − tan y + cot y − 2 = 0 ⇒ 1 + tan y 2 − tan y + cot y − 2 − 2 tan y = 0 ⇒ 1 + tan y cot y − 3 tan y = 0 ⇒ cot y − 3 tan y = 0 ⇒ tan y 1 − 3 tan 2 y = 0 ⇒ 1 − 3 tan 2 y = 0 ⇒ tan y = ± 3 1 ⇒ y = 6 π , 6 5 π , 6 7 π , 6 1 1 π
Once we have a value for y we can take the smallest value and solve for x = 1 2 5 π , and then find x + y = 1 2 7 , so a + b = 1 9