Cotangents

Geometry Level 4

Given that x x and y y are positive numbers satisfying

x y = π 4 x-y= \dfrac\pi4 and

cot x + cot y = 2 \cot x + \cot y = 2 .

And if the minimum value of x + y x+y is equal to a b π \dfrac ab\pi , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Calvin Osborne
Mar 4, 2018

To solve this problem we can start by substituting the first equation into the second and then solve for the value of y y . Substituting the two equations gives us cot ( π 4 + y ) + cot y = 2 \cot (\frac{\pi}{4} + y) + \cot y = 2 . We can now solve this equation from [ 0 , 2 π ) [0, 2 \pi) :

cot ( π 4 + y ) + cot y = 2 1 tan ( π 4 + y ) + cot y = 2 1 tan π 4 tan y tan π 4 + t a n y + cot y = 2 1 tan y 1 + tan y + cot y = 2 1 tan y + cot y + cot y tan y 1 + tan y = 2 2 tan y + cot y 1 + tan y 2 = 0 \cot (\frac{\pi}{4} + y) + \cot y = 2 \Rightarrow \frac{1}{\tan (\frac{\pi}{4} + y)} + \cot y = 2 \Rightarrow \frac{1 - \tan \frac{\pi}{4} \tan y}{\tan \frac{\pi}{4} + tan y} + \cot y = 2 \Rightarrow \frac{1 - \tan y}{1 + \tan y} + \cot y = 2 \Rightarrow \frac{1 - \tan y + \cot y + \cot y \tan y}{1 + \tan y} = 2 \Rightarrow \frac{2 - \tan y + \cot y}{1 + \tan y} - 2 = 0 \Rightarrow 2 tan y + cot y 2 2 tan y 1 + tan y = 0 cot y 3 tan y 1 + tan y = 0 cot y 3 tan y = 0 1 3 tan 2 y tan y = 0 1 3 tan 2 y = 0 tan y = ± 1 3 y = π 6 , 5 π 6 , 7 π 6 , 11 π 6 \frac{2 - \tan y + \cot y - 2 - 2 \tan y}{1 + \tan y} = 0 \Rightarrow \frac{\cot y - 3 \tan y}{1 + \tan y} = 0 \Rightarrow \cot y - 3 \tan y = 0 \Rightarrow \frac{1 - 3 \tan ^2 y}{\tan y} = 0 \Rightarrow 1 - 3 \tan ^2 y = 0 \Rightarrow \tan y = \pm \frac{1}{\sqrt{3}} \Rightarrow y = {\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}}

Once we have a value for y y we can take the smallest value and solve for x = 5 π 12 x = \frac{5 \pi}{12} , and then find x + y = 7 12 x + y = \frac{7}{12} , so a + b = 19 a + b = \boxed{19}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...