How many ways?

A five digit number divisible by 6 is to be formed by using five of the digits 0, 1, 2, 3, 4, 8 without repetition.

Find the total number of ways in which this can be done.


The answer is 150.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 23, 2015
  • For an integer n n to be 6 n 6|n , it must be 3 n 3|n and 2 n 2|n .
  • For 3 n 3|n , then the digit sum of n n must also be divisible by 3 3 . Out of the six combinations of 5 5 digits selected from the set { 0 , 1 , 2 , 3 , 4 , 8 } \{0,1,2,3,4,8\} only two subsets { 0 , 1 , 2 , 4 , 8 } \{0,1,2,4,8\} and { 1 , 2 , 3 , 4 , 8 } \{1,2,3,4,8\} satisfy the condition.
  • For 2 n 2|n , then the last digit of n n must be even. So, for the two subset above, it cannot end with 1 1 or 3 3 .
  • Also a five-digit number cannot start with a 0 0 .

Case 1: { 0 , 1 , 2 , 4 , 8 } : \text{Case 1: } \{0,1,2,4,8\}:

  • For first digit = 1 = 1 , all permutations for the remaining four digits are acceptable. Therefore, N a = 4 ! = 24 N_a = 4! = 24 .
  • For first digit = { 2 , 4 , 8 } = \{2,4,8\} , as 1 1 cannot be the last digit, we first permute the remaining three digits without 1 1 then multiplied by 3 3 for the three positions 1 1 can assume. Therefore, N b = 3 × 3 ! × 3 = 54 N_b = 3\times 3! \times 3 = 54 .

    Case 2: { 1 , 2 , 3 , 4 , 8 } : \text{Case 2: } \{1,2,3,4,8\}:

  • For first digit = { 1 , 3 } = \{1,3\} , the last digit cannot be 3 3 or 1 1 repectively. Therefore, N c = 2 × 3 ! × 3 = 36 N_c = 2\times 3! \times 3 = 36 .

  • For first digit = { 2 , 4 , 8 } = \{2,4,8\} , the last digit cannot be 1 1 or 3 3 . Therefore, N d = 3 × 2 ! × 3 ! = 36 N_d = 3\times 2! \times 3! = 36 .

Therefore, the total number of five-digit numbers meeting the condition is:

N = N a + N b + N c + N d = 150 N = N_a+N_b+N_c+N_d = \boxed{150} .

Moderator note:

Good case analysis. Clearly separated and well presented.

Another approach is as follows .
Let N be the five digit number. For 6|N, the unit digit must be even. So we have 0, 2, 4, 8 the four possibilities for unit digit. The sum of all digits is 18. Since units are known EVEN digits, to form a five digit number from six, that should be 3|N, we have to discard one of the digit. In order to maintain 3|N we can discard only 0 or 3. If 0 discarded, we have 4 spaces to fill 4 digits. 4 ! = 24 o p t i o n s . If 3 is discarded, we have 4! options, but 0 can not be at first place, reducing options by 3! Available options are 4 ! 3 ! = 18. \text {Let N be the five digit number. For 6|N, the unit digit must be even. }\\ \text {So we have 0, 2, 4, 8 the four possibilities for unit digit.} \\ \text {The sum of all digits is } \color{#BA33D6}{18}.\\ \text {Since units are known EVEN digits, to form a five digit number}\\ \text {from six, that should be 3|N, we have to discard one of the digit.}\\ \color{#3D99F6} {\text {In order to maintain 3|N we can discard only 0 or 3.} }\\ \text {If 0 discarded, we have 4 spaces to fill 4 digits. }4!=\color{#3D99F6}{24} ~~ options. \\ \text {If 3 is discarded, we have 4! options, but 0 can not be at first place,} \\ \text {reducing options by 3! Available options are } 4! - 3!=\color{#3D99F6}{18}. With 0 at unit, only one option is available, to discard 3. Options with 0 as unit are only 24. For each of 2, 4, 8 we have both options, of discarding 0 and 3. So for theses three, options are 3 × ( 24 + 18 ) = 126. T o t a l = 24 + 126 = 150 \\ \text {With 0 at unit, only one option is available, to discard 3. } \\ \text {Options with 0 as unit are only } \color{#D61F06}{24}. \\ \text {For each of 2, 4, 8 we have both options, of discarding 0 and 3.}\\ \text {So for theses three, options are } \color{#D61F06}{ {\large3\times}(24+18)=126. } \\Total=24+126=~~~~~~~~~~\color{#D61F06}{ \Large 150}

Niranjan Khanderia - 6 years ago
Shohag Hossen
Sep 15, 2015

A number is divisible by 6 if this number is divisible by 2 and 3. For this reason, we get two case ,

case [1] = 1,2,3,4,8 ( because ( 1 + 2 + 3 + 4 + 8)%3=0 ) )

case[2] = 0,1,2,4,8 ( because (0 + 1 + 2 + 4 + 8)%3=0 ) )

Now , case[1] ,

5! - ( 4! * 2 ) = 72 [ 1 and 3 does not sit as last digit ]

So, solution of case[1] is = 72.

Again , case[2] ,

Total permutation = 5!

first position of number dose not allow 0 ,

So , 5! - 4! = 96

last position of number dose not allow 1 ,

So , 96 - 4! = 72

But , some number are common , where , 0 is first position and 1 is last position.

So , 72 + 3! = 78

Now , case[1] + case[2] = 72 + 78 = 150 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...