Count the squares

How many squares are there in the diagram above?


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Mar 15, 2017

First, we make a list of all widths that can be produced by combining one, two, or more adjacent vertical strips. one strip 1 2 1 3 1 2 two strips 3 3 4 4 3 three strips 4 6 5 6 four strips 7 7 7 five strips 8 9 six strips 10 \begin{array}{r|cccccc} \hline \text{one strip} & 1 & 2 & 1 & 3 & 1 & 2 \\ \text{two strips} & 3 & 3 & 4 & 4 & 3 \\ \text{three strips} & 4 & 6 & 5 & 6 \\ \text{four strips} & 7 & 7 & 7 \\ \text{five strips} & 8 & 9 \\ \text{six strips} & 10 \\ \hline \end{array} Likewise, we list all heights that can be produced by combining horizontal strips. one strip 1 2 1 2 2 2 two strips 3 3 3 4 4 three strips 4 5 5 6 four strips 6 7 7 five strips 8 9 six strips 10 \begin{array}{r|cccccc} \hline \text{one strip} & 1 & 2 & 1 & 2 & 2 & 2 \\ \text{two strips} & 3 & 3 & 3 & 4 & 4 \\ \text{three strips} & 4 & 5 & 5 & 6 \\ \text{four strips} & 6 & 7 & 7 \\ \text{five strips} & 8 & 9 \\ \text{six strips} & 10 \\ \hline \end{array} Squares are formed wherever a vertical strip and a horizontal strip of equal dimensions intersect. Hence we add size ver. strips hor. strips squares 1 3 2 6 2 2 4 8 3 4 3 12 4 3 3 9 5 1 2 2 6 2 2 4 7 3 2 6 8 1 1 1 9 1 1 1 10 1 1 1 50 \begin{array}{r|cc|c} \text{size} & \text{ver. strips} & \text{hor. strips} & \text{squares} \\ \hline 1 & 3 & 2 & 6 \\ 2 & 2 & 4 & 8 \\ 3 & 4 & 3 & 12 \\ 4 & 3 & 3 & 9 \\ 5 & 1 & 2 & 2 \\ 6 & 2 & 2 & 4 \\ 7 & 3 & 2 & 6 \\ 8 & 1 & 1 & 1 \\ 9 & 1 & 1 & 1 \\ 10 & 1 & 1 & 1 \\ \hline & & & \boxed{50}\end{array} Thus we see that there is a total of 50 \boxed{50} squares in the diagram.

Aaaaaaa Aaaaaa
May 7, 2017

there is a square 10x10, and u can make an square 1x1 (minimum integer size of x measuring in this case) and it took you 2 meters^2 for wich one, so just divide 100/2 and u get 50

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...