Equating Floors

Algebra Level 4

Find the number of positive integers x x satisfying

x 8 = x 11 . \left\lfloor \dfrac {x}{8} \right\rfloor = \left\lfloor \dfrac {x}{11} \right\rfloor .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 15, 2016

For x > 0 x > 0 , x 8 = x 11 = k \left \lfloor \dfrac x8 \right \rfloor = \left \lfloor \dfrac x{11} \right \rfloor = k , where k k is a non-negative integer. Then we have:

{ x 8 = k 8 k x < 8 ( k + 1 ) 8 k x 8 k + 7 x 11 = k 11 k x < 11 ( k + 1 ) 11 k x 11 k + 10 \begin{cases} \left \lfloor \dfrac x8 \right \rfloor = k & \implies 8k \le x < 8(k+1) \implies 8k \le x \le 8k + 7 \\ \left \lfloor \dfrac x{11} \right \rfloor = k & \implies 11k \le x < 11(k+1) \implies 11k \le x \le 11k + 10 \end{cases}

Since 8 k 11 k 8k \le 11k and 8 k + 7 11 k + 10 8k + 7 \le 11k + 10 , therefore, 11 k x 8 k + 7 11k \le x \le 8k+7 .

\(\begin{array} {} k = 0 & \implies 11(0) \le x \le 8(0)+7 & \implies x = 1,2,3,4,5,6,7 & \color{blue}{\text{7 solutions}} \\ k = 1 & \implies 11(1) \le x \le 8(1)+7 & \implies x = 11,12,13,14,15 & \color{blue}{\text{5 solutions}} \\ k = 2 & \implies 11(2) \le x \le 8(2)+7 & \implies x = 22,23 & \color{blue}{\text{2 solutions}} \\ k = 3 & \implies 11(3) \le x \le 8(3)+7 & \implies \require{cancel} \color{red}{\cancel{33 \le x \le 31}} & \color{red}{\text{No solution for }k \ge 3} \end{array} \)

Therefore, the total number of integer solutions is 7 + 5 + 2 = 14 7+5+2=\boxed{14} .

I got 15. LOL I can't count.

Joe Mansley - 4 years, 8 months ago

Log in to reply

you got !5 because you counted 0 as a solution which indeed is a solution. But the ques is asking for positive solution....

Hari Krishna Sahoo - 4 years, 8 months ago

great solution sir

space sizzlers - 4 years, 6 months ago
Tapas Mazumdar
Sep 15, 2016

Here,

x 8 = x 11 \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor

Since, x Z + x\in\mathbb{Z^{+}} , so we can have,

x 8 = x 11 = 0 x 8 = x 11 = 1 x 8 = x 11 = 2 \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor = 0 \\ \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor =1 \\ \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor = 2

These are the only three positive integral values for x x because the smallest value of x x for which x 8 = 3 \left\lfloor \dfrac{x}{8} \right\rfloor = 3 is 24 24 and smallest value of x x for which x 11 = 3 \left\lfloor \dfrac{x}{11} \right\rfloor = 3 is 33 33 , but at x = 33 x=33 , x 8 = 4 \left\lfloor \dfrac{x}{8} \right\rfloor = 4 , which means we cannot have a common x x for x 8 = x 11 = 3 \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor = 3 and this trend continues

\forall x 3 x\ge 3 where x Z + x\in\mathbb{Z^{+}} .


So, we have three cases:

Case 1: x 8 = x 11 = 0 \underline{\text{Case 1:}}~~~ \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor = 0

In this case 0 < x < 8 0<x<8 .

So x [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] x\in\left[1,2,3,4,5,6,7\right] .

\blacksquare Total values of x = 7 x = 7 .

Case 2: x 8 = x 11 = 1 \underline{\text{Case 2:}}~~~ \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor = 1

In this case 11 x < 16 11\le x < 16 , because for 8 x < 11 8\le x < 11 , x 8 = 1 \left\lfloor \dfrac{x}{8} \right\rfloor = 1 , while x 11 = 0 \left\lfloor \dfrac{x}{11} \right\rfloor = 0 . Also, at 16 x < 22 16\le x < 22 , x 8 = 2 \left\lfloor \dfrac{x}{8} \right\rfloor = 2 , while x 11 = 1 \left\lfloor \dfrac{x}{11} \right\rfloor = 1 .

So x [ 11 , 12 , 13 , 14 , 15 ] x\in\left[11,12,13,14,15\right] .

\blacksquare Total values of x = 5 x = 5 .

Case 3: x 8 = x 11 = 2 \underline{\text{Case 3:}}~~~ \left\lfloor \dfrac{x}{8} \right\rfloor = \left\lfloor \dfrac{x}{11} \right\rfloor = 2

In this case 22 x 23 22 \le x \le 23 or simply x [ 22 , 23 ] x\in\left[22,23\right] , because for x 24 x \ge 24 , x 8 x 11 \left\lfloor \dfrac{x}{8} \right\rfloor \neq \left\lfloor \dfrac{x}{11} \right\rfloor (as deduced earlier) and for 16 x < 22 16\le x < 22 , x 8 = 2 \left\lfloor \dfrac{x}{8} \right\rfloor = 2 , while x 11 = 1 \left\lfloor \dfrac{x}{11} \right\rfloor = 1 as already shown in previous case.

So x [ 22 , 23 ] x\in\left[22,23\right] .

\blacksquare Total values of x = 2 x = 2 .


Hence, the required answer: 7 + 5 + 2 = 14 7+5+2=\boxed{14}

Beautiful detailed explanation.

Niranjan Khanderia - 4 years, 8 months ago

Log in to reply

Thank you. :)

Tapas Mazumdar - 4 years, 8 months ago

good observation!!

Raven Herd - 4 years, 8 months ago

Let x n 1 = x n 2 = k , n 2 > n 1 \left \lfloor \dfrac x{n_1 }\right \rfloor = \left \lfloor \dfrac x{n_2} \right \rfloor = k,~n_2>n_1

So, solution for x x becomes x n 2 k and x n 1 ( k + 1 ) 1 x\ge n_2k~~\text{and}~ ~x\le n_1(k+1)-1

So, for the set to be not null, n 2 k n 1 ( k + 1 ) 1 k n 1 1 n 2 n 1 n_2k\le n_1(k+1)-1\\k\le \dfrac {n_1-1}{n_2-n_1}

Substituting values, we get k < 3 k<3

So, for k = 0 7 values k = 1 5 values k = 2 2 values k=0\to \color{#3D99F6}{7~\text{values}}\\k=1\to \color{#3D99F6}{5~\text{values}}\\k=2\to \color{#3D99F6}{2~\text{values}}

Hence 14 values \color{#3D99F6}{\boxed{14~\text{values}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...