Counting Matrices

Algebra Level 5

Let M n \mathcal{M}_n be the n × n n \times n matrix given by

M n = [ 1 2 n n + 1 n + 2 2 n n 2 ( n 1 ) n 2 ( n 2 ) n 2 ] . \mathcal{M}_n = \begin{bmatrix} 1 & 2 & \cdots & n \\ n+1 & n+2 & \cdots & 2n \\ \vdots & \vdots & \vdots & \vdots \\ n^2-(n-1) & n^2-(n-2) & \cdots & n^2 \\ \end{bmatrix}.

Find n = 1 det ( M n ) . \displaystyle \sum_{n = 1}^{\infty} \text{det}\big(\mathcal{M}_n\big).

1 -1 0 0 1 1 2 2 The sum doesn't converge

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akeel Howell
Jul 30, 2018

We are given an n × n n \times n matrix M n = [ 1 2 n n + 1 n + 2 2 n n 2 ( n 1 ) n 2 ( n 2 ) n 2 ] . \mathcal{M}_n = \begin{bmatrix} 1 & 2 & \cdots & n \\ n+1 & n+2 & \cdots & 2n \\ \vdots & \vdots & \vdots & \vdots \\ n^2-(n-1) & n^2-(n-2) & \cdots & n^2 \\ \end{bmatrix}.

Row reduce the matrix by replacing each row (besides the first one) with the result when the first row is subtracted from it. In other words,

[ 1 2 n ( n + 1 ) 1 ( n + 2 ) 2 ( 2 n ) n ( n 2 ( n 1 ) ) 1 ( n 2 ( n 2 ) ) 2 ( n 2 ) n ] = [ 1 2 n n n n n ( n 1 ) n ( n 1 ) n ( n 1 ) ] . \begin{bmatrix} 1 & 2 & \cdots & n \\ \left( n+1 \right) - 1 & \left( n+2 \right) - 2 & \cdots & \left( 2n \right) - n \\ \vdots & \vdots & \vdots & \vdots \\ \left( n^2-(n-1) \right) - 1 & \left( n^2-(n-2) \right) - 2 & \cdots & \left( n^2 \right) - n \\ \end{bmatrix} = \begin{bmatrix} 1 & 2 & \cdots & n \\ n & n & \cdots & n \\ \vdots & \vdots & \vdots & \vdots \\ n(n-1) & n(n-1) & \cdots & n(n-1) \\ \end{bmatrix}.

So each row of the matrix (starting with the second) is a multiple of n n , implying that matrices of this form have determinant zero, provided they have enough rows for one row to be a multiple of another. Since this sequence starts with the second row, we see that det ( M n ) = 0 \text{det} \big(\mathcal{M}_n\big) = 0 , when n 3 n \ge 3 .

Now, we need to find det ( M n ) , for n = 1 , 2 \text{det} \big(\mathcal{M}_n\big), \text{ for } n = 1,2 . For n = 1 n = 1 , this is clearly 1 1 . For n = 2 n = 2 , we have det [ 1 2 3 4 ] = 1 × 4 2 × 3 = 4 6 = 2 \text{det} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} = 1 \times 4 - 2 \times 3 = 4 - 6 = -2 .

Hence, n = 1 det ( M n ) = 1 2 + 0 = 1 \displaystyle \sum_{n = 1}^{\infty} \text{det}\big(\mathcal{M}_n\big) = 1 - 2 + 0 = \boxed{-1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...