Let me Count the Sides

Geometry Level 4

A regular polygon with side length 1 has area less than 123456789.

What is the maximum number of sides such polygon can have?


The answer is 39387.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The area of an n n -side regular polygon A n A_n is the area of \n) isosceles triangle of equal sides r r with base 1 1 , The angle at the center of the polygon is 2 π n \frac{2\pi}{n} and the two base angles are 1 2 ( π 2 π n ) = π 2 π n \frac{1}{2}\left(\pi-\frac{2\pi}{n} \right) = \frac{\pi}{2} - \frac{\pi}{n} . Then, we have:

A n = n 2 ( 1 ) ( r ) sin ( π 2 π n ) A n = n r 2 cos π n \begin{aligned} A_n & = \dfrac{n}{2}(1)(r)\sin{\left(\frac{\pi}{2} - \frac{\pi}{n} \right)} \quad \Rightarrow A_n = \dfrac{nr}{2} \cos{\frac{\pi}{n}} \end{aligned}

From cosine rule, we have:

1 2 = 2 r 2 2 r 2 cos 2 π n = 2 r 2 ( 1 2 cos 2 π n + 1 ) = 4 r 2 sin 2 π n \begin{aligned} 1^2 & = 2r^2 - 2r^2\cos{\frac{2\pi}{n}} = 2r^2 \left(1 - 2\cos^2{\frac{\pi}{n}} +1\right) = 4r^2 \sin^2{\frac{\pi}{n}} \end{aligned}

r 2 = 1 4 sin 2 π n r = 1 2 sin π n \begin{aligned} \Rightarrow r^2 & = \frac{1}{4\sin^2{\frac{\pi}{n}}} \quad \Rightarrow r & = \frac{1}{2\sin{\frac{\pi}{n}}} \end{aligned}

A n = n r 2 cos π n = n 4 cot π n \begin{aligned} \Rightarrow A_n & = \dfrac{nr}{2} \cos{\frac{\pi}{n}} = \dfrac{n}{4} \cot{\frac{\pi}{n}} \end{aligned}

For the largest A n < 123456789 A_n < 123456789 , we have:

n 4 cot π n < 123456789 tan π n > n 4 × 123456789 [ For small x, tan x x ] π n > n 4 × 123456789 n 2 < 4 π × 123456789 n < 4 π × 123456789 = 39387.86317 n = 39387 \begin{aligned} \frac{n}{4} \cot{\frac{\pi}{n}} & < 123456789 \\ \Rightarrow \color{#3D99F6}{\tan{\frac{\pi}{n}}} & > \frac{n}{4 \times 123456789} \quad \quad \color{#3D99F6} {[\text{For small x, } \tan{x} \approx x]} \\ \Rightarrow \color{#3D99F6} {\frac{\pi}{n}} & > \frac{n}{4 \times 123456789} \\ n^2 & < 4\pi \times 123456789 \\ \Rightarrow n & < \sqrt{4\pi \times 123456789} = 39387.86317 \\ n & = \boxed{39387} \end{aligned}

We can check that A 39387 < 12345678 A_{39387} < 12345678 and A 39388 > 12345678 A_{39388} > 12345678 , confirming the answer.

Moderator note:

Thanks. For proving the area of a regular polygon with side length 1.

Generally, the area of a regular n n -gon with side length p p is 1 4 n p 2 cot ( π n ) \frac 14 np^2 \cot\left(\frac \pi n\right) .

I found a decent approximation by letting the radius of a similarly-sized circle be r r , calling 2 π r = n 2\pi r = n and π r 2 = 123456789 \pi r^{2} = 123456789 . Then n = 2 π 123456789 / π 39388 n = 2\pi \sqrt{123456789 / \pi} \approx 39388 , so I just used the Challenge Master's formula to test n = 39387 , n = 39388 n = 39387, n = 39388 .

Jake Lai - 5 years, 9 months ago

I forgot the 1/4 and just wrote n cot π n n \cot \frac{\pi}{n} ...

Gian Sanjaya - 5 years, 9 months ago
Lu Chee Ket
Sep 28, 2015

A = N / [4 Tan(Pi / N)]

{Square unit area for unit side length of N-polygon.}

For N and A:

39387 for 123451377.754009 TRUE

39388 for 123457646.46933 FALSE

Answer: 39387

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
from math import tan, pi

i = 40000
while i >= 39000:
    temp = (0.25*i) / tan(pi/float(i))
    if temp < 123456789:
        print i
        break
    i -= 1

# through trial and error: 40000 > i > 39000

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...