Counting up!

Algebra Level 1

The sum of the first 6 terms of an arithmetic sequence is 120 If the first number is 10, what is the common difference?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Toshit Jain
Mar 15, 2017

U s i n g t h e f o r m u l a f o r s u m o f t e r m s i n a n a r i t h m e t i c s e q u e n c e i . e . . S n = n 2 [ 2 a + ( n 1 ) d ] Using \space the \space formula \space for \space sum \space of \space terms \space in \space an \space arithmetic \space sequence \space i.e.. S_{n} \space =\space \frac{n}{2}\space [2a \space + \space (n-1)d] w h e r e S n = s u m o f t h e t e r m s , n = n u m b e r o f t e r m s , a = f i r s t t e r m , d = c o m m o n d i f f e r e n c e where \space S_{n}\space=\space sum \space of \space the \space terms\space, n \space= \space number \space of \space terms\space, \space a \space=\space first \space term \space, \space d \space=\space common \space difference \space

H e r e S n = 120 , n = 6 , a = 10 Here \space S_{n} \space = \space 120 \space, \space n \space=\space 6 \space,\space a\space=\space 10

120 = 6 2 [ 2 × 10 + 5 d ] \rightarrow \space 120\space=\space \frac{6}{2} \space[ 2\times 10 \space +\space 5d]

120 = 3 ( 20 + 5 d ) \rightarrow \space 120 \space=\space 3 \space (20\space+\space5d)

5 d = 20 \rightarrow \space 5d \space = \space 20

d = 4 \Rightarrow \space \boxed{\therefore \space d \space = \space 4}

Alex Li
Mar 13, 2017

The mean of the 6 terms must be 20, since 20*6 = 120. Therefore, the last term is 30 (since the first and last term are equidistant from the mean). The final term will be 10+5x = 30. (30-10)/5 = 4.

Mahdi Raza
May 4, 2020

( a ) + ( a + d ) + ( a + 2 d ) + ( a + 3 d ) + ( a + 4 d ) + ( a + 5 d ) = 120 ( 10 ) + ( 10 + d ) + ( 10 + 2 d ) + ( 10 + 3 d ) + ( 10 + 4 d ) + ( 10 + 5 d ) = 120 [ a = 10 ] 60 + 15 d = 120 d = 4 \begin{aligned} (a) + (a+d) + (a + 2d) + (a + 3d) + (a + 4d) + (a + 5d) &= 120 \\ (10) + (10 +d) + (10 + 2d) + (10 + 3d) + (10 + 4d) + (10 + 5d) &= 120 \quad [a = 10] \\ 60 + 15d &= 120 \\ d &= \boxed{4} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...