Coupled Lines

Geometry Level 3

Two lines pass through the point ( 6 , 7 ) (-6, 7) and each is a distance of 2 from the origin at their closest to the origin. What is the sum of the slopes of these lines?


The answer is -2.625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Andrew Ellinor
Oct 12, 2015

Each line has the form y 7 = m ( x + 6 ) m x y + 6 m + 7 = 0. y - 7 = m(x + 6) \longrightarrow mx - y + 6m + 7 = 0. Using the point to line distance formula, we'll use this line and the origin to derive the following equation:

m ( 0 ) 1 ( 0 ) + 6 m + 7 m 2 + 1 = 2 \frac{\left|m(0) - 1(0) + 6m + 7\right|}{\sqrt{m^2 + 1}} = 2

Multiply both sides of m 2 + 1 \sqrt{m^2 + 1} and then square both sides to obtain

36 m 2 + 84 m + 49 = 4 m 2 + 4 32 m 2 + 84 m + 45 = 0 ( 8 m + 15 ) ( 4 m + 3 ) = 0 36m^2 + 84m + 49 = 4m^2 + 4 \longrightarrow 32m^2 + 84m + 45 = 0 \longrightarrow (8m + 15)(4m + 3) = 0

This implies the two slopes are 15 8 -\frac{15}{8} and 3 4 -\frac{3}{4} , which sum to -2.625

You could have avoided one step by directly apply vieta"s formula for sum of roots = -84/32 = -2.625

But this approach does not ensures that real slopes exist for given set of constraints

Prakhar Bindal - 5 years, 2 months ago

Isn't this overrated? I could solve it after all :P

Mehul Arora - 5 years, 2 months ago

L e t A ( 6 , 7 ) , O ( 0 , 0 ) , A O T 1 a n d A O T 2 , b e t h e t w o r t Δ s f o r m e d , w i t h r t a t T 1 , a n d T 2 . A O = ( 6 ) 2 + 7 2 ) = 85 . Angle AO makes with x-axes is = T a n 1 7 6 = 180 49.3987 = 130.601 3 o . T h e a n g l e T 1 A O = T 2 A O = S i n 1 2 85 = 12.528 8 o . S o t a n g e n t s , A T 1 a n d A T 2 m a k e a n g l e s ± 12.528 8 o w i t h A O . S o t h e s u m o f t h e s l o p e s = T a n ( 130.6013 + 12.5288 ) + T a n ( 130.6013 12.5288 ) = 2.625 Let~~ A(-6,7),~O(0,0),~~AOT_1~ and~ AOT_2, ~be~ the~ two~ rt~ \angle~ \Delta s~ formed,\\ with~rt \angle~ at~ T_1,~and~T_2.\\ AO=\sqrt{(-6)^2+7^2)}=\sqrt{85}.\\ \text{Angle AO makes with x-axes is } =Tan^{-1}\dfrac 7 {-6}=180-49.3987 =130.6013^o.\\ The~ angle~ T_1AO=T_2AO=Sin^{-1}\dfrac 2 {\sqrt{85}}=12.5288^o. \\ So~ tangents, ~AT_1 ~and~ AT_2~ make~angles~\pm~12.5288^o~ with~ AO.\\ So ~the~ sum ~of~ the~ slopes =Tan(130.6013 + 12.5288) + Tan(130.6013 - 12.5288) \\ =\Large ~~~~\color{#D61F06}{- 2.625} O R OR The lines are the two tangents to x 2 + y 2 = 4 x^2+y^2=4 from( - 6, 7). Let L be segment joining ( - 6,7) to center (0,0).
Let θ \theta be angle made by L with +x-axis. α ~~~~~~\alpha the angle made by tangents with L.
L = ( 6 ) 2 + 7 2 = 85 . T a n θ = 6 7 . S i n α = 2 85 , T a n α = 2 9 . The angles made by the lines with +x-axis are ( θ + α ) a n d ( θ α ) . S u m o f t h e s l o p e = T a n ( θ + α ) + T a n ( θ α ) = ( 7 6 + 2 9 1 + 7 27 ) + ( 7 6 2 9 1 7 27 ) = 21 8 = 2.625 L=\sqrt{( - 6)^2+7^2}=\sqrt{85}. ~~~~~~~~~~~~Tan\theta=\dfrac{ - 6} 7.~~~~~~~~~ Sin\alpha=\dfrac 2 {\sqrt{85}} , ~~~~~~~~\therefore~Tan\alpha=\dfrac 2 9.\\ \text{The angles made by the lines with +x-axis are }~~~ (\theta+ \alpha)~~~and~~ ~ (\theta- \alpha).\\ Sum ~ of ~ the ~ slope=Tan(\theta+ \alpha)~+Tan(\theta- \alpha)\! =\left(\dfrac{ \frac 7 {- 6}\! +\! \frac 2 9 }{1+\frac 7 {27} } \right)\! +\! \left(\dfrac{ \frac 7 {- 6} - \frac 2 9 }{1-\frac 7 {27} } \right)=\! - \!\dfrac {21} 8= - 2.625

Abhijeet Verma
Oct 16, 2015

Another method will be to assume the line as x cos α + y sin α = 2 x\cos { \alpha } +y\sin { \alpha } =2 and then put in it ( 6 , 7 ) (-6,7) , thereby giving a trigonometric equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...