Crack the Inverse!

Geometry Level 4

arctan 1 3 + arctan 1 7 + arctan 1 13 + + arctan 1 1 + n + n 2 + arctan 1 n + 1 = ? \arctan\frac{1}{3}+\arctan\frac{1}{7}+\arctan\frac{1}{13}+ \ldots +\arctan\frac{1}{1+n+n^{2}}\\ +\arctan\frac{1}{n+1}=\ ?


The answer is 0.7854.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Nov 10, 2015

arctan ( n + 1 ) n 1 + n ( n + 1 ) = arctan ( n + 1 ) arctan ( n ) \large{\arctan \frac{(n+1)-n}{1+n(n+1)}=\arctan (n+1)-\arctan (n)}

Also arctan x = arccot ( 1 x ) \arctan x=\text{arccot}(\frac{1}{x})

arctan ( x ) + arccot ( x ) = π 2 \large{\arctan (x)+\text{arccot} (x)=\frac{\pi}{2}}

Now we have

arctan 2 arctan 1 + arctan 3 arctan 2 + . . . . . . . + arctan n arctan ( n 1 ) + arctan ( n + 1 ) arctan n + arccot ( n + 1 ) \large{\color{#D61F06}{\arctan 2}-\arctan 1+\color{#3D99F6}{\arctan 3}-\color{#D61F06}{\arctan 2}+.......+\color{#20A900}{\arctan n}-\color{#E81990}{\arctan (n-1)}+\arctan(n+1)-\color{#20A900}{\arctan n}+\text{arccot} (n+1)}

This reduces to

arctan ( n + 1 ) + arccot ( n + 1 ) arctan 1 \large{\arctan(n+1)+\text{arccot} (n+1)-\arctan 1}

π 2 π 4 = π 4 = 0.785 \large{\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}=\boxed{0.785}}

arctan(n+1) -arctan(n) ?

Soner Karaca - 5 years, 7 months ago

Log in to reply

I hope now its clear. :)

Tanishq Varshney - 5 years, 7 months ago

Log in to reply

I hope so :)

Tauhid Khan Tamim - 3 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...