Crafty Infinite Limit

Calculus Level 3

lim x ( 2 1 / x + 2 7 1 / x + 8 1 / x 3 ) x = ? \large \lim_{x \rightarrow \infty } \left(\frac{2^{1/x}+27^{1/x}+8^{1/x}}{3}\right)^{x} =?

6 2 3 6 \sqrt[3]{2} 4 2 3 4 \sqrt[3]{2} 2 2 3 2 \sqrt[3]{2} 3 2 3 3 \sqrt[3]{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 13, 2018

Relevant wiki: L'Hopital's Rule - Basic

L = lim x ( 2 1 x + 2 7 1 x + 8 1 x 3 ) x Let u = 1 x = lim u 0 ( 2 u + 2 7 u + 8 u 3 ) 1 u As lim x a f ( x ) g ( x ) = 1 = exp ( lim u o 1 u ( 2 u + 2 7 u + 8 u 3 1 ) ) lim x a f ( x ) g ( x ) = e lim x a g ( x ) ( f ( x ) 1 ) = exp ( lim u o 2 u + 2 7 u + 8 u 3 3 u ) A 0/0 case, L’H o ˆ pital’s rule applies. = exp ( lim u o 2 u ln 2 + 2 7 u ln 27 + 8 u ln 8 3 ) Differentiate up and down w.r.t u . = exp ( ln 2 3 + ln 3 + ln 2 ) = 6 2 3 \begin{aligned} L & = \lim_{x \to \infty} \left(\frac {2^\frac 1x + 27^\frac 1x + 8^\frac 1x}3\right)^x & \small \color{#3D99F6} \text{Let }u = \frac 1x \\ & = \lim_{u \to 0} \left(\frac {2^u + 27^u + 8^u}3\right)^\frac 1u & \small \color{#3D99F6} \text{As }\lim_{x\to a} f(x)^{g(x)} = 1^\infty \\ & = \exp \left(\lim_{u \to o} \frac 1u \left(\frac {2^u + 27^u + 8^u}3- 1\right)\right) & \small \color{#3D99F6} \implies \lim_{x\to a} f(x)^{g(x)} = e^{\lim_{x\to a} g(x)(f(x)-1)} \\ & = \exp \left(\lim_{u \to o} \frac {2^u + 27^u + 8^u-3}{3u} \right) & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \exp \left(\lim_{u \to o} \frac {2^u\ln 2 + 27^u\ln 27 + 8^u\ln 8}3 \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t }u. \\ & = \exp \left(\frac {\ln 2}3 + \ln 3 + \ln 2\right) \\ & = \boxed{6\sqrt[3]2} \end{aligned}

How can we differentiate w.r.t x x if x x is not even present there?

Vilakshan Gupta - 3 years, 1 month ago

Log in to reply

Sorry, typos.

Chew-Seong Cheong - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...