Cramer is on Brilliant?

Algebra Level 1

x = 1 4 1 5 1 2 11 1 3 3 4 1 5 1 2 1 1 3 , y = 3 1 1 5 5 2 1 11 3 3 4 1 5 1 2 1 1 3 , z = 3 4 1 5 1 5 1 1 11 3 4 1 5 1 2 1 1 3 x = \frac{\left| \begin{array}{ccc} 1 & -4 & 1\\ 5 & 1 & 2 \\ 11 & -1 & -3 \end{array} \right|}{\left| \begin{array}{ccc} 3 & -4 & 1\\ 5 & 1 & 2 \\ 1 & -1 & -3 \end{array} \right|}, \quad \quad y = \frac{\left| \begin{array}{ccc} 3 & 1 & 1\\ 5 & 5 & 2 \\ 1 & 11 & -3 \end{array} \right|}{\left| \begin{array}{ccc} 3 & -4 & 1\\ 5 & 1 & 2 \\ 1 & -1 & -3 \end{array} \right|}, \quad \quad z = \frac{\left| \begin{array}{ccc} 3 & -4 & 1\\ 5 & 1 & 5 \\ 1 & -1 & 11 \end{array} \right|}{\left| \begin{array}{ccc} 3 & -4 & 1\\ 5 & 1 & 2 \\ 1 & -1 & -3 \end{array} \right|}

Using Cramer's rule, which equation is not solved by the solutions above?

2 x + 3 y z = 5 2x + 3y - z = 5 5 x + y + 2 z = 5 5x + y + 2z = 5 3 x 4 y + z = 1 3x - 4y + z = 1 x y 3 z = 11 x - y - 3z = 11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jason Carrier
Sep 21, 2018

Cramer’s Rule involves division by the determinant of the coefficients matrix. So, we match the rows of the denominators to answers, and see which isn’t present.

The row 3 -4 1 corresponds to 3 x 4 y + z = 1 3x-4y+z=1

The row 5 1 2 corresponds to 5 x + y + 2 z = 5 5x+y+2z=5

The row 1 -1 -3 corresponds to x y 3 z = 11 x-y-3z=11

The only choice not represented is 2 x + 3 y z = 5 \boxed{2x+3y-z=5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...