Crazy Areas!

Calculus Level 5

Find the maximum area bounded by the curves y 2 = 4 a x y^2 = 4ax , y = a x y =ax and y = x a y =\dfrac xa , where a a lies between 1 and 2 inclusive.


The answer is 84.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The graph of the three curves is shown above.

Let the parabola y 2 = 4 a x y^2 = 4ax cuts line y = a x y=ax and y = x a y= \dfrac xa at ( x 1 , y 1 ) (x_1, y_1) and ( x 2 , y 2 ) (x_2, y_2) respectively. Then we have:

{ y 1 2 = 4 a x 1 ( a x 1 ) 2 = 4 a x 1 x 1 = 4 a y 1 = 4 y 2 2 = 4 a x 2 ( x 2 a ) 2 = 4 a x 2 x 2 = 4 a 3 y 2 = 4 a 2 \begin{cases} y_1^2 = 4ax_1 & \implies (ax_1)^2 = 4ax_1 & \implies x_1 = \dfrac 4a & \implies y_1 = 4 \\ y_2^2 = 4ax_2 & \implies \left(\dfrac {x_2}a \right)^2 = 4ax_2 & \implies x_2 = 4a^3 & \implies y_2 = 4a^2 \end{cases}

From the graph, we note that the area bounded by the three curves is given below:

A = x 1 y 1 2 triangle + x 1 x 2 4 a x d x parabola x 2 y 2 2 triangle = 8 a + 2 a 4 a 4 a 3 x 1 2 d x 8 a 5 = 8 a + 2 a 2 3 x 3 2 4 a 4 a 3 8 a 5 = 8 a + 4 a 3 ( 8 a 9 2 8 a 3 2 ) 8 a 5 = 8 a + 32 3 ( a 5 1 a ) 8 a 5 = ( 32 3 8 ) ( a 5 1 a ) = 8 3 ( a 5 1 a ) \begin{aligned} A & = \underbrace{\frac {x_1y_1}2}_{\text{triangle}} + \underbrace{\int_{x_1}^{x_2} \sqrt{4ax} \ dx}_{\text{parabola}} - \underbrace{\frac {x_2y_2}2}_{\text{triangle}} \\ & = \frac 8a + 2 \sqrt a \int_\frac 4a^{4a^3} x^\frac 12 dx - 8a^5 \\ & = \frac 8a + 2 \sqrt a \cdot \frac 23 x^\frac 32 \bigg|_\frac 4a^{4a^3} - 8a^5 \\ & = \frac 8a + \frac {4 \sqrt a} 3 \left(8a^\frac 92 - 8a^{-\frac 32} \right) - 8a^5 \\ & = \frac 8a + \frac {32}3 \left(a^5 - \frac 1a \right) - 8a^5 \\ & = \left(\frac {32}3 - 8\right) \left(a^5 - \frac 1a \right) \\ & = \frac 83 \left(a^5 - \frac 1a \right) \end{aligned}

For a [ 1 , 2 ] a \in [1, 2] , a 5 1 a a^5 - \dfrac 1a increases with a a . Therefore, the largest area A m a x = 8 3 ( 2 5 1 2 ) = 8 3 ( 32 1 2 ) = 84 A_{max} = \dfrac 83 \left(2^5 - \dfrac 12 \right) = \dfrac 83 \left(32 - \dfrac 12 \right) =\boxed{84} .

This is exactly what i wrote in my notebook! .upvoted!

Prakhar Bindal - 4 years, 9 months ago

Exactly! Same method (+1)

Aniket Sanghi - 4 years, 9 months ago

Just clarifying, a 5 1 a a^5 - \frac{1}{a} increases with a a because d A d a = 8 3 ( 5 a 4 + 1 a 2 ) \frac{dA}{da} = \frac{8}{3} \cdot (5a^4 + \frac{1}{a^2}) , which is greater than 0 0 for all real a a . Same solution here!

Guilherme Niedu - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...