Crazy Calculus

Calculus Level 4

y = e x 2 sin ( x 2 + 2017 ) \large y=e^{\frac x{\sqrt 2}} \sin \left(\frac x{\sqrt 2}+2017\right)

Let y n y_n be the n n th derivative of y y as defined above. Find y 2017 y_{2017} at x = 0 x=0 .


The answer is 0.7725926171.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 19, 2017

y = e x 2 sin ( x 2 + 2017 ) By Euler’s formula e i θ = cos θ + i sin θ = [ e x 2 e i ( x 2 + 2017 ) ] where ( z ) is the imaginary part of z . = [ e ( 1 + i ) x 2 e 2017 i ] y n = [ ( 1 + i 2 ) n e ( 1 + i ) x 2 e 2017 i ] y 2017 = [ ( 1 + i 2 ) 2017 e ( 1 + i ) x 2 e 2017 i ] Note that ( 1 + i ) 2 = 2 i = [ i 1008 1 + i 2 e ( 1 + i ) x 2 e 2017 i ] Note that i 4 = 1 = [ 1 + i 2 e x 2 ( cos ( x 2 + 2017 ) + i sin ( x 2 + 2017 ) ) ] = e x 2 2 ( cos ( x 2 + 2017 ) + sin ( x 2 + 2017 ) ) y 2017 x = 0 = cos ( 2017 ) + sin ( 2017 ) 2 0.773 \begin{aligned} y & = e^{\frac x{\sqrt 2}} \sin \bigg(\frac x{\sqrt 2}+2017\bigg) & \small \color{#3D99F6} \text{By Euler's formula } e^{i\theta} = \cos \theta + i \sin \theta \\ & = \Im \bigg[e^{\frac x{\sqrt 2}}e^{i\left(\frac x{\sqrt 2}+2017\right)} \bigg] & \small \color{#3D99F6} \text{where }\Im(z) \text{ is the imaginary part of }z. \\ & = \Im \bigg[e^{(1+i)\frac x{\sqrt 2}}e^{2017i}\bigg] \\ \implies y_n & = \Im \bigg[\bigg(\frac {1+i}{\sqrt 2}\bigg)^n e^{(1+i)\frac x{\sqrt 2}}e^{2017i}\bigg] \\ y_{2017} & = \Im \bigg[\bigg(\frac {1+i}{\sqrt 2}\bigg)^{2017} e^{(1+i)\frac x{\sqrt 2}}e^{2017i}\bigg] & \small \color{#3D99F6} \text{Note that }(1+i)^2 = 2i \\ & = \Im \bigg[i^{1008} \cdot \frac {1+i}{\sqrt 2} \cdot e^{(1+i)\frac x{\sqrt 2}}e^{2017i}\bigg] & \small \color{#3D99F6} \text{Note that } i^4 = 1 \\ & = \Im \bigg[\frac {1+i}{\sqrt 2} \cdot e^{\frac x{\sqrt 2}}\bigg(\cos \bigg(\frac x{\sqrt 2} + 2017\bigg) + i \sin \bigg(\frac x{\sqrt 2} + 2017\bigg) \bigg) \bigg] \\ & = \frac {e^{\frac x{\sqrt 2}}}{\sqrt 2} \bigg(\cos \bigg(\frac x{\sqrt 2} + 2017\bigg) + \sin \bigg(\frac x{\sqrt 2} + 2017\bigg) \bigg)\\ y_{2017} \bigg|_{x=0} & = \frac {\cos (2017)+ \sin(2017)}{\sqrt 2} \approx \boxed{0.773} \end{aligned}

I followed almost the same procedure. Just substituted 1 + i 2 \frac{1+i}{\sqrt{2}} with e i π 4 e^{i\frac{\pi}{4}} .

Atomsky Jahid - 3 years, 9 months ago
Hassan Abdulla
Aug 20, 2017

let z = x 2 + 2017 z=\frac { x }{ \sqrt { 2 } } +2017 d z d x = 1 2 x = 0 z = 2017 \Rightarrow \qquad \frac { dz }{ dx } =\frac { 1 }{ \sqrt { 2 } } \qquad x=0\quad \rightarrow \quad z=2017

y = e z 2017 sin ( z ) = e 2017 e z sin ( z ) y={ e }^{ z-2017 }\sin { \left( z \right) } ={ e }^{ -2017 }{ e }^{ z }\sin { \left( z \right) }

y ( 1 ) = e 2017 e z ( sin ( z ) + cos ( z ) ) d z d x = e 2017 2 e z ( sin ( z ) + cos ( z ) ) { y }^{ \left( 1 \right) }={ e }^{ -2017 }{ e }^{ z }\left( \sin { \left( z \right) } +\cos { \left( z \right) } \right) \cdot \frac { dz }{ dx } =\frac { { e }^{ -2017 } }{ \sqrt { 2 } } \cdot { e }^{ z }\left( \sin { \left( z \right) } +\cos { \left( z \right) } \right)

y ( 2 ) = e 2017 2 e z ( sin ( z ) + cos ( z ) + cos ( z ) sin ( z ) ) d z d x = e 2017 2 e z ( 2 cos ( z ) ) 1 2 = e 2017 e z ( cos ( z ) ) { y }^{ \left( 2 \right) }=\frac { { e }^{ -2017 } }{ \sqrt { 2 } } \cdot { e }^{ z }\left( \sin { \left( z \right) } +\cos { \left( z \right) + } \cos { \left( z \right) -\sin { \left( z \right) } } \right) \cdot \frac { dz }{ dx } =\frac { { e }^{ -2017 } }{ \sqrt { 2 } } \cdot { e }^{ z }\cdot \left( 2\cos { \left( z \right) } \right) \cdot \frac { 1 }{ \sqrt { 2 } } ={ e }^{ -2017 }{ e }^{ z }\left( \cos { \left( z \right) } \right)

y ( 3 ) = e 2017 e z ( cos ( z ) sin ( z ) ) d z d x = e 2017 2 e z ( cos ( z ) sin ( z ) ) { y }^{ \left( 3 \right) }={ e }^{ -2017 }{ e }^{ z }\left( \cos { \left( z \right) -\sin { \left( z \right) } } \right) \cdot \frac { dz }{ dx } =\frac { { e }^{ -2017 } }{ \sqrt { 2 } } \cdot { e }^{ z }\left( \cos { \left( z \right) -\sin { \left( z \right) } } \right)

y ( 4 ) = e 2017 2 e z ( cos ( z ) sin ( z ) sin ( z ) cos ( z ) ) d z d x = e 2017 2 e z ( 2 sin ( z ) ) 1 2 = e 2017 e z ( sin ( z ) ) { y }^{ \left( 4 \right) }=\frac { { e }^{ -2017 } }{ \sqrt { 2 } } \cdot { e }^{ z }\left( \cos { \left( z \right) -\sin { \left( z \right) } - } \sin { \left( z \right) } -\cos { \left( z \right) } \right) \cdot \frac { dz }{ dx } =\frac { { e }^{ -2017 } }{ \sqrt { 2 } } \cdot { e }^{ z }\cdot \left( -2\sin { \left( z \right) } \right) \cdot \frac { 1 }{ \sqrt { 2 } } ={ -e }^{ -2017 }{ e }^{ z }\left( \sin { \left( z \right) } \right)

y ( 4 ) = y ( y ( 4 ) ) 4 = ( y ) 4 y ( 8 ) = y ( 4 ) = ( y ) = y { y }^{ \left( 4 \right) }=-y\Rightarrow { \left( { y }^{ \left( 4 \right) } \right) }^{ 4 }={ \left( -y \right) }^{ 4 }\Rightarrow { y }^{ \left( 8 \right) }=-{ y }^{ \left( 4 \right) }=-\left( -y \right) =y

Now y ( 2017 ) = d d x ( y ( 2016 ) ) = y ( 1 ) { y }^{ \left( 2017 \right) }=\frac { d }{ dx } { \left( { y }^{ \left( 2016 \right) } \right) }={ y }^{ \left( 1 \right) }

y ( 1 ) z = 2017 = e 2017 2 e z ( sin ( z ) + cos ( z ) ) z = 2017 { y }^{ \left( 1 \right) }{ | }_{ z=2017 }=\frac { { e }^{ -2017 } }{ \sqrt { 2 } } \cdot { e }^{ z }\left( \sin { \left( z \right) } +\cos { \left( z \right) } \right) { | }_{ z=2017 } = e 2017 e 2017 ( sin ( 2017 ) + cos ( 2017 ) ) 2 0.77259 =\frac { { e }^{ -2017 }{ e }^{ 2017 }\left( \sin { \left( 2017 \right) } +\cos { \left( 2017 \right) } \right) }{ \sqrt { 2 } } \approx 0.77259

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...