Crazy Calculus 7

Calculus Level 2

y = x + x + x + x + y=\sqrt { x+\sqrt { x+\sqrt { x+\sqrt { x+\cdots }}}}

For x > 0 x>0 , define y y as above. What is d y d x \dfrac{dy}{dx} ?

  • P : 1 2 y 1 P: \dfrac{1}{2y-1}
  • Q : x x + 2 y Q: \dfrac{x}{x+2y}
  • R : 1 1 + 4 x R: \dfrac { 1 }{ \sqrt { 1+4x } }
  • S : y 2 x + y S: \dfrac{y}{2x + y}
Q Q , R R and S S Only P P Only Q Q P P , Q Q , R R and S S P P , R R and S S P P , Q Q and R R

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 15, 2016

Relevant wiki: Implicit Differentiation Problem Solving - Basic

y = x + x + x + x + . . . y = x + y y 2 = x + y 2 y d y d x = 1 + d y d x ( 2 y 1 ) d y d x = 1 d y d x = 1 2 y 1 : P \begin{aligned} y & = \sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+...}}}} \\ \implies y & = \sqrt{x+y} \\ y^2 & = x+y \\ \implies 2y \frac {dy}{dx} & = 1 + \frac {dy}{dx} \\ (2y - 1) \frac {dy}{dx} & = 1 \\ \implies \frac {dy}{dx} & = \frac 1{2y-1} : P \end{aligned}

Considering R R :

y 2 = x + y y 2 y = x y 2 y + 1 4 = x + 1 4 ( y 1 2 ) 2 = x + 1 4 y 1 2 = x + 1 4 2 y 1 = 2 × 1 + 4 x 2 1 2 y 1 = 1 1 + 4 x : R \begin{aligned} y^2 & = x + y \\ y^2 - y & = x \\ y^2 - y + \frac 14 & = x + \frac 14 \\ \left(y - \frac 12 \right)^2 & = x + \frac 14 \\ y - \frac 12 & = \sqrt{x + \frac 14} \\ 2y - 1 & = 2 \times \frac {\sqrt{1+4x}}2 \\ \implies \frac 1{2y-1} & = \frac 1{\sqrt{1+4x}} : R \end{aligned}

Considering S S :

S : y 2 x + y = y 2 x + 2 y y = y 2 y 2 y = 1 2 y 1 \begin{aligned} S: \frac y{2x+y} & = \frac y{2x+2y-y} \\ & = \frac y{2y^2-y} \\ & = \frac 1{2y-1} \end{aligned}

Considering Q Q :

To show that x x + 2 y 1 2 y 1 \dfrac x{x+2y} \ne \dfrac 1{2y-1} , we can use a case, for example x = 1 x=1 , then from y 2 = x + y y^2 = x+y , we get y = 1 + 5 2 y = \dfrac {1+\sqrt 5}2 .Substituting into P : 1 2 y 1 = 1 5 P: \dfrac 1{2y-1} = \dfrac 1{\sqrt 5} , substituting in Q : x x + 2 y = 1 2 + 5 P Q: \dfrac x{x+2y} = \dfrac 1{2+\sqrt 5} \ne P .

Therefore, d y d x = P , R and S \dfrac {dy}{dx} = \boxed{P, R \text{ and }S} .

For sake of completeness, we should show that Q Q is not a solution. To this end, suppose Q = P Q = P . Then

x x + 2 y = 1 2 y 1 x ( 2 y 1 ) = x + 2 y 2 x y 2 y = 2 x y = x x 1 \dfrac{x}{x + 2y} = \dfrac{1}{2y - 1} \Longrightarrow x(2y - 1) = x + 2y \Longrightarrow 2xy - 2y = 2x \Longrightarrow y = \dfrac{x}{x - 1} ,

which does not equal the given expression for y y for all x 0 x \ge 0 . (For example, for x = 1 x = 1 the given expression yields y = ϕ y = \phi but is undefined for x x 1 \dfrac{x}{x - 1} . In fact the two expressions are equal only when x = 2 x = 2 .)

Brian Charlesworth - 4 years, 11 months ago

Perfect one!!

Jatin Chanchlani - 4 years, 11 months ago

I think it should be only P because R and S are not defined at (0,0)

SHASHANK GOEL - 4 years, 11 months ago

I dissent check for case R for x<0 function does not exist, however derivative does. Besides squaring your are introducing negative so cautious mode is advisible.

Now think about if we change variable x=y we get same result for second term of equation what means that derivative is always equal 1. What is consistent with formula P since for x tending to 0 y=1

Mariano PerezdelaCruz - 4 years, 11 months ago

Be careful about your statement. They only apply when the function is differentiable. As such, the proper domain should be included. Note that x = 0 , y = 0 x = 0, y = 0 is a possible value, but the function is not differentiable at that point. Hence, I've added the constraint that x > 0 x > 0 .

Calvin Lin Staff - 4 years, 10 months ago

In R aren’t you just rewriting y in a different way there wasn’t any differentiation in your process for R.

Sean Bastian - 2 years, 4 months ago

Log in to reply

d y d x = 1 2 y 1 = 1 1 + 4 x : R \dfrac {dy}{dx} = \dfrac 1{2y-1} = \dfrac 1{\sqrt{1+4x}}: R

Chew-Seong Cheong - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...