Crazy Cosine Carousel

Algebra Level 5

We define a carousel to be a (unordered) set of four pairwise distinct real numbers { t 1 , t 2 , t 3 , t 4 } , \{t_1,t_2,t_3,t_4\}, all strictly between 0 0 and 2 π , 2\pi , such that in some order they satisfy the following system of equations

{ cos ( 2 t 1 ) = 4 cos t 1 cos t 2 cos ( 2 t 2 ) = 4 cos t 2 cos t 3 cos ( 2 t 3 ) = 4 cos t 3 cos t 4 cos ( 2 t 4 ) = 4 cos t 4 cos t 1 . \begin{cases} \cos (2t_1) = 4\cos t_1 \cos t_2\\ \cos (2t_2) = 4\cos t_2 \cos t_3\\ \cos (2t_3) = 4\cos t_3 \cos t_4\\ \cos (2t_4) = 4\cos t_4 \cos t_1. \end{cases}

How many carousels are there?

Details and assumptions

A set is unordered. If a set satisfies the above system for several different orderings, it is only counted once.

A set of values is called pairwise distinct if no two of them are equal. For example, the set { 1 , 2 , 2 } \{1, 2, 2\} is not pairwise distinct, because the last two values are the same.


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jon Haussmann
Oct 8, 2013

For 1 i 4 1 \le i \le 4 , let x i = cos t i x_i = \cos t_i . Then the given equations become 2 x i 2 1 = 4 x i x i + 1 , 2x_i^2 - 1 = 4x_i x_{i + 1}, where the indices are taken modulo 4. Solving for x i + 1 x_{i + 1} , we get x i + 1 = 2 x i 2 1 4 x i . x_{i + 1} = \frac{2x_i^2 - 1}{4x_i}.

Let y i = 1 x i 2 y_i = \frac{1}{x_i \sqrt{2}} , so x i = 1 y i 2 x_i = \frac{1}{y_i \sqrt{2}} . Substituting, we get 1 y i + 1 2 = 2 ( 1 y i 2 ) 2 1 4 1 y i 2 , \frac{1}{y_{i + 1} \sqrt{2}} = \frac{2(\frac{1}{y_i \sqrt{2}})^2 - 1}{4 \cdot \frac{1}{y_i \sqrt{2}}}, which simplifies to y i + 1 = 2 y i 1 y i 2 . y_{i + 1} = \frac{2y_i}{1 - y_i^2}.

Finally, let y 1 = tan θ y_1 = \tan \theta , where 0 θ < 18 0 0^\circ \le \theta < 180^\circ . Then

y 2 = 2 y 1 1 y 1 2 = 2 tan θ 1 tan 2 θ = tan 2 θ , y 3 = 2 y 2 1 y 2 2 = 2 tan 2 θ 1 tan 2 2 θ = tan 4 θ , y 4 = 2 y 3 1 y 3 2 = 2 tan 4 θ 1 tan 2 4 θ = tan 8 θ , y 1 = 2 y 4 1 y 4 2 = 2 tan 8 θ 1 tan 2 8 θ = tan 16 θ . \begin{aligned} y_2 &= \frac{2y_1}{1 - y_1^2} = \frac{2 \tan \theta}{1 - \tan^2 \theta} = \tan 2 \theta, \\ y_3 &= \frac{2y_2}{1 - y_2^2} = \frac{2 \tan 2 \theta}{1 - \tan^2 2 \theta} = \tan 4 \theta, \\ y_4 &= \frac{2y_3}{1 - y_3^2} = \frac{2 \tan 4 \theta}{1 - \tan^2 4 \theta} = \tan 8 \theta, \\ y_1 &= \frac{2y_4}{1 - y_4^2} = \frac{2 \tan 8 \theta}{1 - \tan^2 8 \theta} = \tan 16 \theta. \end{aligned}

Hence, tan θ = tan 16 θ \tan \theta = \tan 16 \theta . The tan \tan function has period 18 0 180^\circ , so 15 θ = ( 180 n ) 15 \theta = (180n)^\circ for some integer n n , 0 n 14 0 \le n \le 14 , or θ = ( 12 n ) . \theta = (12n)^\circ. Then ( x 1 , x 2 , x 3 , x 4 ) (x_1, x_2, x_3, x_4) is of the form ( 1 2 tan ( 12 n ) , 1 2 tan ( 24 n ) , 1 2 tan ( 48 n ) , 1 2 tan ( 96 n ) ) . \left( \frac{1}{\sqrt{2} \cdot \tan (12n)^\circ}, \frac{1}{\sqrt{2} \cdot \tan (24n)^\circ}, \frac{1}{\sqrt{2} \cdot \tan (48n)^\circ}, \frac{1}{\sqrt{2} \cdot \tan (96n)^\circ} \right).

Using the identity 1 tan θ = tan ( 9 0 θ ) \frac{1}{\tan \theta} = \tan (90^\circ - \theta) , it is easy to check that up to cyclic permutation, all these solutions are equal to one of the following:

( 1 2 tan 3 0 , 1 2 tan 3 0 , 1 2 tan 3 0 , 1 2 tan 3 0 ) , ( 1 ) ( 1 2 tan 1 8 , 1 2 tan 5 4 , 1 2 tan 1 8 , 1 2 tan 5 4 ) , ( 2 ) ( 1 2 tan 6 , 1 2 tan 7 8 , 1 2 tan 6 6 , 1 2 tan 4 2 ) , ( 3 ) ( 1 2 tan 6 , 1 2 tan 7 8 , 1 2 tan 6 6 , 1 2 tan 4 2 ) . ( 4 ) \begin{array}{c} \left( \frac{1}{\sqrt{2}} \tan 30^\circ, -\frac{1}{\sqrt{2}} \tan 30^\circ, \frac{1}{\sqrt{2}} \tan 30^\circ, -\frac{1}{\sqrt{2}} \tan 30^\circ \right), \quad (1) \\ \left( \frac{1}{\sqrt{2}} \tan 18^\circ, -\frac{1}{\sqrt{2}} \tan 54^\circ, -\frac{1}{\sqrt{2}} \tan 18^\circ, \frac{1}{\sqrt{2}} \tan 54^\circ \right), \quad (2) \\ \left( \frac{1}{\sqrt{2}} \tan 6^\circ, -\frac{1}{\sqrt{2}} \tan 78^\circ, -\frac{1}{\sqrt{2}} \tan 66^\circ, -\frac{1}{\sqrt{2}} \tan 42^\circ \right), \quad (3) \\ \left( -\frac{1}{\sqrt{2}} \tan 6^\circ, \frac{1}{\sqrt{2}} \tan 78^\circ, \frac{1}{\sqrt{2}} \tan 66^\circ, \frac{1}{\sqrt{2}} \tan 42^\circ \right). \quad (4) \end{array}

Because x i = cos t i x_i = \cos t_i , each element of a viable solution must be at most 1 in absolute value. Since 1 2 tan 6 6 > 1 2 tan 6 0 = 1 2 3 > 1 , \frac{1}{\sqrt{2}} \tan 66^\circ > \frac{1}{\sqrt{2}} \tan 60^\circ = \frac{1}{\sqrt{2}} \cdot \sqrt{3} > 1, this rules out solutions (3) and (4).

On the other hand, tan 5 4 = 1 + 5 10 2 5 , \tan 54^\circ = \frac{1 + \sqrt{5}}{\sqrt{10 - 2 \sqrt{5}}}, and

1 2 1 + 5 10 2 5 < 1 1 + 5 < 2 5 5 ( 1 + 5 ) 2 < ( 2 5 5 ) 2 6 + 2 5 < 20 4 5 6 5 < 14 3 5 < 7 ( 3 5 ) 2 < 7 2 45 < 49 , \begin{aligned} \frac{1}{\sqrt{2}} \cdot \frac{1 + \sqrt{5}}{\sqrt{10 - 2 \sqrt{5}}} &< 1 \\ \Leftrightarrow \quad 1 + \sqrt{5} &< 2 \sqrt{5 - \sqrt{5}} \\ \Leftrightarrow \quad (1 + \sqrt{5})^2 &< (2 \sqrt{5 - \sqrt{5}})^2 \\ \Leftrightarrow \quad 6 + 2 \sqrt{5} &< 20 - 4 \sqrt{5} \\ \Leftrightarrow \quad 6 \sqrt{5} &< 14 \\ \Leftrightarrow \quad 3 \sqrt{5} &< 7 \\ \Leftrightarrow \quad (3 \sqrt{5})^2 &< 7^2 \\ \Leftrightarrow \quad 45 &< 49, \end{aligned}

which is true, so solutions (1) and (2) are viable.

The last step is to determine how many carousels can be made from solutions (1) and (2).

In solution (1), note that x 1 = x 3 x_1 = x_3 and x 2 = x 4 x_2 = x_4 . But all the t i t_i must be distinct, so there is exactly one carousel that corresponds to solution (1), which is as follows: Let α = arccos ( 1 2 tan 3 0 ) = arccos ( 1 6 ) . \alpha = \arccos \left( \frac{1}{\sqrt{2}} \tan 30^\circ \right) = \arccos \left( \frac{1}{\sqrt{6}} \right). Then 0 < α < 18 0 0 < \alpha < 180^\circ and cos ( 18 0 α ) = cos α = 1 6 \cos (180^\circ - \alpha) = -\cos \alpha = -\frac{1}{\sqrt{6}} , so ( α , 18 0 α , 36 0 α , α + 18 0 ) (\alpha, 180^\circ - \alpha, 360^\circ - \alpha, \alpha + 180^\circ) is a carousel.

In solution (2), all the x i x_i are distinct. This means for each i i , there are two choices for t i t_i , namey t i = arccos x i t_i = \arccos x_i and t i = 36 0 arccos x i t_i = 360^\circ - \arccos x_i . So there are 2 4 = 16 2^4 = 16 carousels that correspond to solution (2).

This gives us a total of 1 + 16 = 17 1 + 16 = 17 carousels.

Moderator note:

An excellent and very detailed solution of a tricky problem!

Mark Hennings
Oct 8, 2013

Let u j = cos t j u_j = \cos t_j for 1 j 4 1 \le j \le 4 . Then 1 u j < 1 -1 \le u_j < 1 for all j j , and 2 u 1 2 1 = 4 u 1 u 2 2 u 2 2 1 = 4 u 2 u 3 2 u 3 2 1 = 4 u 3 u 4 2 u 4 2 1 = 4 u 4 u 1 \begin{array}{ccc}2u_1^2-1 = 4u_1u_2 &\qquad& 2u_2^2-1 = 4u_2u_3 \\ 2u_3^2-1 = 4u_3u_4 &\qquad& 2u_4^2-1 = 4u_4u_1 \end{array} Thus u j 0 u_j \neq 0 for all j j , and u 2 = f ( u 1 ) u 3 = f ( u 2 ) u 4 = f ( u 3 ) u 1 = f ( u 4 ) u_2 \; = \; f(u_1) \qquad u_3 \; = \; f(u_2) \qquad u_4 \; = \; f(u_3) \qquad u_1 \; = \; f(u_4) where f f is the function f ( x ) = 2 x 2 1 4 x f(x) \; = \; \frac{2x^2-1}{4x} and hence, composing f f with itself f f f f ( u j ) = u j 1 j 4 ffff(u_j) \; = \; u_j \qquad 1 \le j \le 4 Now f f f f ( x ) x ffff(x)-x is the rational function with numerator 1 208 x 2 + 5040 x 4 29120 x 6 + 22880 x 8 + 109824 x 10 163072 x 12 + 56320 x 14 3840 x 16 \begin{array}{l} 1 - 208 x^2 + 5040 x^4 - 29120 x^6 + 22880 x^8 \\ + 109824 x^{10} - 163072 x^{12} + 56320 x^{14} - 3840 x^{16} \end{array} and denominator 32 x ( 1 + 2 x 2 ) ( 1 12 x 2 + 4 x 4 ) × ( 1 56 x 2 + 280 x 4 224 x 6 + 16 x 8 ) \begin{array}{l} 32 x (-1 + 2 x^2) (1 - 12 x^2 + 4 x^4) \\ \times (1 - 56 x^2 + 280 x^4 - 224 x^6 + 16 x^8)\end{array} The numerator factorises as ( 1 + 2 x 2 ) ( 1 + 6 x 2 ) ( 1 20 x 2 + 20 x 4 ) × ( 1 184 x 2 + 536 x 4 224 x 6 + 16 x 8 ) \begin{array}{l} -(1 + 2 x^2) (-1 + 6 x^2) (1 - 20 x^2 + 20 x^4) \\ \times (1 - 184 x^2 + 536 x^4 - 224 x^6 + 16 x^8)\end{array} so we deduce that u 1 , u 2 , u 3 , u 4 u_1,u_2,u_3,u_4 satisfy h ( x ) = 0 h(x)=0 , where h ( x ) h(x) is the polynomial ( 6 x 2 1 ) ( 1 20 x 2 + 20 x 4 ) ( 1 184 x 2 + 536 x 4 224 x 6 + 16 x 8 ) (6 x^2-1) (1 - 20 x^2 + 20 x^4) (1 - 184 x^2 + 536 x^4 - 224 x^6 + 16 x^8) Thus the only possible values of u 1 , u 2 , u 3 , u 4 u_1,u_2,u_3,u_4 are ± α , ± β 1 , ± β 2 , ± γ 1 , ± γ 2 , ± γ 3 , ± γ 4 \pm\alpha,\pm\beta_1,\pm\beta_2,\pm\gamma_1,\pm\gamma_2,\pm\gamma_3,\pm\gamma_4 , where α = 1 6 β 1 = 5 + 2 5 10 β 2 = 5 2 5 10 γ 1 = 7 2 5 3 ( 5 2 5 ) γ 2 = 7 2 5 + 3 ( 5 2 5 ) γ 3 = 7 2 + 5 3 ( 5 + 2 5 ) γ 4 = 7 2 + 5 + 3 ( 5 + 2 5 ) \begin{array}{cc} \alpha=\frac{1}{\sqrt{6}} \\ \beta_1=\sqrt{\frac{5+2\sqrt{5}}{10}} & \beta_2=\sqrt{\frac{5 - 2\sqrt{5}}{10}} \\ \gamma_1=\sqrt{\tfrac72 - \sqrt{5} - \sqrt{3(5-2\sqrt{5})}} & \gamma_2=\sqrt{\tfrac72 - \sqrt{5} + \sqrt{3(5-2\sqrt{5})}} \\ \gamma_3=\sqrt{\tfrac72 + \sqrt{5} - \sqrt{3(5+2\sqrt{5})}} & \gamma_4=\sqrt{\tfrac72 + \sqrt{5} + \sqrt{3(5+2\sqrt{5})}} \end{array} But f ( γ 1 ) = γ 4 f ( γ 2 ) = γ 3 f ( γ 3 ) = γ 1 f ( γ 4 ) = γ 2 f(\gamma_1) = -\gamma_4 \qquad f(\gamma_2) = \gamma_3 \qquad f(\gamma_3) = -\gamma_1 \qquad f(\gamma_4) = \gamma_2 and so the only possible candidates for u u -translates of carousels involving the γ \gamma terms are cyclic permutations of γ 1 , γ 4 , γ 2 , γ 3 and γ 1 , γ 4 , γ 2 , γ 3 \gamma_1,-\gamma_4,-\gamma_2,-\gamma_3 \qquad \mbox{and} \quad -\gamma_1,\gamma_4,\gamma_2,\gamma_3 Since γ 2 , γ 4 > 1 \gamma_2,\gamma_4 > 1 , we deduce that none of ± γ 1 , ± γ 2 , ± γ 3 , ± γ 4 \pm\gamma_1,\pm\gamma_2,\pm\gamma_3,\pm\gamma_4 can occur in a u u -translate of a carousel. Thus the only possible values of u 1 , u 2 , u 3 , u 4 u_1,u_2,u_3,u_4 are ± α , ± β 1 , ± β 2 \pm\alpha,\pm\beta_1,\pm\beta_2 , and since f ( ± α ) = α f ( ± β 1 ) = ± β 2 f ( ± β 2 ) = β 1 f(\pm\alpha) \; =\; \mp\alpha \qquad f(\pm\beta_1) \; = \;\pm\beta_2 \qquad f(\pm\beta_2) \; = \; \mp\beta_1 the only possible values of u 1 , u 2 , u 3 , u 4 u_1,u_2,u_3,u_4 are α , α , α , α or β 1 , β 2 , β 1 , β 2 \alpha,-\alpha,\alpha,-\alpha \qquad \mbox{or} \qquad \beta_1,\beta_2,-\beta_1,-\beta_2 or some cyclic permutation of one of these.

We need to convert these two u u -translates back into the possible carousels. For any 0 < u < 1 0<|u|<1 there are exactly 2 2 values of t t between 0 0 and 2 π 2\pi such that cos t = u \cos t = u .

  1. Since the four numbers in a carousel need to be distinct, there is exactly one carousel which leads to the u u -translate α , α , α , α \alpha,-\alpha,\alpha,-\alpha , and that is { cos 1 α , π cos 1 α , 2 π cos 1 α , π + cos 1 α } \{\cos^{-1}\alpha,\pi-\cos^{-1}\alpha,2\pi-\cos^{-1}\alpha,\pi+\cos^{-1}\alpha \} .

  2. To get the u u -translate β 1 , β 2 , β 1 , β 2 \beta_1,\beta_2,-\beta_1,-\beta_2 , we need to choose one out of cos 1 β 1 \cos^{-1}\beta_1 and 2 π cos 1 β 1 2\pi-\cos^{-1}\beta_1 , one out of cos 1 β 2 \cos^{-1}\beta_2 and 2 π cos 1 β 2 2\pi-\cos^{-1}\beta_2 , one out of π cos 1 β 1 \pi - \cos^{-1}\beta_1 and π + cos 1 β 1 \pi + \cos^{-1}\beta_1 , and one out of π cos 1 β 2 \pi - \cos^{-1}\beta_2 and π + cos 1 β 2 \pi + \cos^{-1}\beta_2 . Since the eight numbers we are choosing between are all distinct, we can make all four of these choices freely and always obtain four distinct numbers, and hence there are 16 16 different carousels which lead to the u u -translate β 1 , β 2 , β 1 , β 2 \beta_1,\beta_2,-\beta_1,-\beta_2 .

Thus there are 17 17 carousels in total.

Moderator note:

Brilliant! This is not the easiest way to do it, but is quite original.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...