Crazy diffy! 2

Calculus Level 5

d 2 x d y 2 + 2 d x d y + 5 x = sin ( y ) \frac { { d }^{ 2 }x }{ { d }y^{ 2 } } +2\frac { dx }{ dy } +5x=\sin { \left( y \right) }

Above shows a differential equation. You are given that if y = 0 y = 0 , then x = 1 x = 1 and d x d y = 2 \dfrac{dx}{dy} = 2 . Let A A denote the value of x x when y = 30 y=30 . Find 1000 A \lfloor 1000A \rfloor .

Take y in degrees.


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Feb 11, 2016

Taking the auxiliary equation of the equation, we get:

x ( p ) ( p 2 + 2 p + 5 ) = p + 4 + L { sin y } \overline { x } \left( p \right) \left( { p }^{ 2 }+2p+5 \right) =p+4+\mathcal{ L }\left\{ \sin { y } \right\}

x ( p ) ( p 2 + 2 p + 5 ) = p + 4 + 1 p 2 + 1 \overline { x } \left( p \right) \left( { p }^{ 2 }+2p+5 \right) =p+4+\frac { 1 }{ { p }^{ 2 }+1 }

x ( p ) = p + 4 p 2 + 2 p + 5 + 1 ( p 2 + 1 ) ( p 2 + 2 p + 5 ) \overline { x } \left( p \right) =\frac { p+4 }{ { p }^{ 2 }+2p+5 } +\frac { 1 }{ \left( { p }^{ 2 }+1 \right) \left( { p }^{ 2 }+2p+5 \right) }

x ( p ) = 11 10 p + 4 p 2 + 2 p + 5 + 1 10 p + 1 5 ( p 2 + 1 ) \overline { x } \left( p \right) =\frac { \frac { 11 }{ 10 } p+4 }{ { p }^{ 2 }+2p+5 } +\frac { \frac { -1 }{ 10 } p+\frac { 1 }{ 5 } }{ \left( { p }^{ 2 }+1 \right) }

x ( p ) = 11 10 p + 1 ( p + 1 ) 2 + 2 2 + 29 20 2 ( p + 1 ) 2 + 2 2 1 10 p + 1 5 ( p 2 + 1 ) \overline { x } \left( p \right) =\frac { 11 }{ 10 } \frac { p+1 }{ { \left( p+1 \right) }^{ 2 }+{ 2 }^{ 2 } } +\frac { 29 }{ 20 } \frac { 2 }{ { \left( p+1 \right) }^{ 2 }+{ 2 }^{ 2 } } \frac { \frac { -1 }{ 10 } p+\frac { 1 }{ 5 } }{ \left( { p }^{ 2 }+1 \right) }

Therefore,

x ( y ) = e y ( 11 10 cos ( 2 y ) + 29 20 sin ( 2 y ) ) 1 10 cos ( y ) + 1 5 sin ( y ) \boxed{x\left( y \right) ={ e }^{ -y }\left( \frac { 11 }{ 10 } \cos { \left( 2y \right) } +\frac { 29 }{ 20 } \sin { \left( 2y \right) } \right) -\frac { 1 }{ 10 } \cos { \left( y \right) } +\frac { 1 }{ 5 } \sin { \left( y \right) }}

i got the same general form but did a mistake in finding the coefficients

nice problem :)

Hamza A - 5 years, 4 months ago

Log in to reply

Thanks. This problem is prone to mistakes. The coefficients are not at all good looking.

Aditya Kumar - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...