Crazy exponents

Algebra Level 4

( ( x ) 4 4 x 16 ) 16 x 8 4 = ( ( x 4 x 2 ) 4 x 8 8 ) 16 x \Large {\left({\left(\sqrt{x}\right)}^{4\sqrt{4x^{16}}}\right)}^{\sqrt[4]{16x^8}} = {\left({\left(x^{4x^2}\right)}^{\sqrt[8]{4x^8}}\right)}^{16\sqrt{\sqrt{x}}}

Find the real value of x x satisfying the real equation above.

The answer is of the form a 27 \sqrt[27]{a} , then submit the value of a a

Here x 0 , 1 x \neq 0,1


This is one part of the set Fun with exponents


The answer is 8192.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Apr 26, 2016

( ( x ) 4 4 x 16 ) 16 x 8 4 = ( ( x 4 x 2 ) 4 x 8 8 ) 16 x ( ( x 1 2 ) 8 x 8 ) 2 x 2 = ( ( x 4 x 2 ) 4 x 8 8 ) 16 x 1 4 x 1 2 × 8 x 8 × 2 x 2 = x 4 x 2 × 4 x 8 8 × 6 x 1 4 x 8 x 10 = x 64 4 8 x 13 4 Equating the powers : 8 x 10 = 64 4 8 x 13 4 8 64 4 8 = x 13 4 x 10 x 10 x 13 4 = 8 4 8 x 27 4 = 8 4 8 Raising power of 4 on both sides : x 27 = 8192 x = 8192 27 a = 8192 \begin{aligned} \Large{{\left({\left(\sqrt{x}\right)}^{4\sqrt{4x^{16}}}\right)}^{\sqrt[4]{16x^8}}} & = \Large{{\left({\left(x^{4x^2}\right)}^{\sqrt[8]{4x^8}}\right)}^{16\sqrt{\sqrt{x}}}}\\ \\ \Large{{\left({\left(x^{\tfrac{1}{2}}\right)}^{8x^8}\right)}^{2x^2}} & = \Large{{\left({\left(x^{4x^2}\right)}^{\sqrt[8]{4x^8}}\right)}^{16x^{\frac{1}{4}}}}\\ \\ \Large{x^{\tfrac{1}{2} × 8x^8 × 2x^2}} & = \Large{x^{4x^2 × \sqrt[8]{4x^8} × 6x^{\frac{1}{4}}}}\\ \\ \Large{x^{8x^{10}}} & = \Large{x^{64\sqrt[8]{4}x^{\frac{13}{4}}}}\\ \\ \text{Equating the powers}:-\\ \Large{8x^{10}} & = \Large{64\sqrt[8]{4} x^{\tfrac{13}{4}}}\\ \Large{\dfrac {8}{64\sqrt[8]{4}}} & = \Large{\dfrac{x^{\tfrac{13}{4}}}{x^{10}}}\\ \\ \Large{\dfrac{x^{10}}{x^{\frac{13}{4}}}} & = \Large{8\sqrt[8]{4}}\\ \\ \Large{x^{\frac{27}{4}}} & = \Large{8\sqrt[8]{4}}\\ \text{Raising power of 4 on both sides}:-\\ \Large{x^{27}} & = \Large{8192}\\ \Large{x} & = \Large{\sqrt[27]{8192}}\\ \therefore \Large{a} & = \Large{\boxed{8192}} \end{aligned}

How is it that there is no space for writing solution? Any way I am giving it below.
Since the base is same I am directly equating the exponents on both sides as per rule ( x m ) n = x m × n . (x^m)^n=x^{m\times n}.
( 1 2 ) × ( 4 × 2 X 8 ) × ( 2 X 2 ) = ( 4 X 2 ) × ( 4 1 8 X ) × ( 16 × X 1 4 ) 2 1 × 8 × 2 × X 8 × X 2 = 4 × 2 1 4 × 16 × X 2 × X × X 1 4 2 1 + 3 + 1 × X 8 + 2 = 2 2 + 1 4 + 4 × X 2 + 1 + 1 4 . 2 3 × X 10 = 2 25 4 × X 13 4 X 27 4 = 2 13 4 X = 2 13 27 = a 27 . a = 8192 \Large (\frac 1 2) \times (4 \times 2X^8)\times (2X^2) = (4X^2)\times (4^{\frac 1 8}X) \times(16 \times X^{\frac 1 4})\\ \Large \implies 2^{-1} \times 8 \times 2\ \ \times X^8 \times X^2 = 4 \times 2^{\frac 1 4} \times 16\ \ \times X^2 \times X \times X^{\frac 1 4}\\ \Large \implies 2^{ - 1+3+1} \times X^{8+2}=2^{2+ {\frac 1 4} +4}\ \ \times X^{2+1+ {\frac 1 4}}. \\ \Large \implies 2^3\times X^{10} = 2^{\frac {25} 4} \times X^{ \frac {13} 4}\\ \Large \implies X^{\frac {27} 4}= 2^{\frac {13} 4} \\ \Large \implies X=\sqrt[27]{2^{13}}=\sqrt[27]a.\\ \Large \implies a = \color{#D61F06}{8192}

Niranjan Khanderia - 5 years, 1 month ago

Ehh I'm confused. How did you get this:

8 x 10 = 64 4 8 8 x 10 8x^{10} = 64 \sqrt[8]{4} - 8x^{10}

Hung Woei Neoh - 5 years, 1 month ago

Log in to reply

You were not confused, my solution was wrong. The answer is correct, but I typed the same LaTeX two times XD. Thank you very much, I have edited my solution accordingly.

Ashish Menon - 5 years, 1 month ago

Log in to reply

You're welcome :)

Hung Woei Neoh - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...