Crazy Functions

Algebra Level 3

Suppose a function f f is such that f ( 1 x ) 3 f ( x ) = x f\left( \frac { 1 }{ x } \right) -3f\left( x \right)=x for every x 0 x\neq 0 . Find f ( 2 ) f\left( 2 \right) .


The answer is -0.8125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Bill Bell
Oct 13, 2015

Alternatively, the solution steps can be done using a symbolic algebra system, in this case sympy. You still must know how to solve the problem.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
>>> from sympy import *
>>> var('x')
x
>>> f=Function('f')
>>> ex=Eq(f(1/x)-3*f(x),x)
>>> ex.subs(x,2)
f(1/2) - 3*f(2) == 2
>>> ex.subs(x,Rational(1,2))
-3*f(1/2) + f(2) == 1/2
>>> solve([f(Rational(1,2))-3*f(2)-2,-3*f(Rational(1,2))+f(2)-Rational(1,2)])
[{f(2): -13/16, f(1/2): -7/16}]
>>> N(Rational(-13,16))
-0.812500000000000

Andy Wong
Oct 12, 2015

Create a system of equations with two variables. In this case, 2 and 1 2 \frac{1}{2} would be smart to use for x as there will only be two variables, f ( 2 ) f\left( 2 \right) and f ( 1 2 ) f\left( \frac { 1 }{ 2 } \right) . 1. f ( 1 2 ) 3 f ( 2 ) = 2 2. f ( 2 ) 3 f ( 1 2 ) = 1 2 1.\quad f\left( \frac { 1 }{ 2 } \right) -3f\left( 2 \right) =2\\ 2.\quad f\left( 2 \right) -3f\left( \frac { 1 }{ 2 } \right) =\frac { 1 }{ 2 } Now, substitute and solve. Isolating f ( 2 ) f\left(2\right) in equation 2: f ( 2 ) = 1 2 + 3 f ( 1 2 ) f\left( 2 \right) =\frac { 1 }{ 2 } +3f\left( \frac { 1 }{ 2 } \right) Substituting into equation 1: f ( 1 2 ) 3 ( 1 2 + 3 f ( 1 2 ) ) = 2 f ( 1 2 ) 3 2 9 f ( 1 2 ) = 2 8 f ( 1 2 ) = 7 2 f ( 1 2 ) = 7 16 f\left( \frac { 1 }{ 2 } \right) -3\left( \frac { 1 }{ 2 } +3f\left( \frac { 1 }{ 2 } \right) \right) =2\\ f\left( \frac { 1 }{ 2 } \right) -\frac { 3 }{ 2 } -9f\left( \frac { 1 }{ 2 } \right) =2\\ -8f\left( \frac { 1 }{ 2 } \right) =\frac { 7 }{ 2 } \\ f\left( \frac { 1 }{ 2 } \right) =-\frac { 7 }{ 16 } Plugging back into equation 1: 7 16 3 f ( 2 ) = 2 3 f ( 2 ) = 39 16 f ( 2 ) = 13 16 f ( 2 ) = 0.8125 -\frac { 7 }{ 16 } -3f\left( 2 \right) =2\\ -3f\left( 2 \right) =\frac { 39 }{ 16 } \\ f\left( 2 \right) =-\frac { 13 }{ 16 } \\ f\left( 2 \right) =\boxed { -0.8125 }

Bad solution

Prithwish Mukherjee - 2 years, 5 months ago
Barr Shiv
Dec 10, 2018

plug in 1/x and then solve f(x) you get: -(3x/8+1/8x) plug in 2 and you'r done

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...