If the following integral is satisfied for some relationship between the constants a , b and c -
∫ − ∞ ∞ ∫ − ∞ ∞ e − ( a x 2 + 2 b x y + c y 2 ) d x d y = 1
Find the value of b 2 − a c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Just use gaussian distribution: − ∞ ∫ ∞ 2 π σ 2 1 e − 2 σ 2 ( x − μ ) 2 d x = 1
Knowing that: − ∞ ∫ ∞ e − α ( x − μ ) 2 d x = α π The Integral may be rewriteen as: − ∞ ∫ ∞ − ∞ ∫ ∞ e − ( a x 2 + 2 b y x + c y 2 ) d x d y = − ∞ ∫ ∞ − ∞ ∫ ∞ e − a ( x + a b y ) 2 e − ( c − a b 2 ) y 2 d x d y = a π − ∞ ∫ ∞ e − ( c − a b 2 ) y 2 d y = a π c − a b 2 π = a c − b 2 π 2 = 1
Therefore: a c − b 2 = π 2
Please correct me if I'm wrong, I think we should make restriction here, i.e. − ∞ < y < x < ∞ , so that this process can be justified ∫ − ∞ ∞ e − a ( x + a b y ) 2 d x = a π Both variables are not separable here.
Log in to reply
Right. But we are integrating over x, and y acts as a constant relative to x. That't the reason why the integral may be calculated!
Problem Loading...
Note Loading...
Set Loading...
Change to polar co-ordiantes :
x = r c o s ( θ )
y = r s i n ( θ )
And our area element d x d y becomes r d θ d r
Also we are integrating it for the whole space :
Integral becomes :
∫ 0 2 π ∫ 0 ∞ r e − r 2 ( a c o s 2 ( θ ) + 2 b c o s ( θ ) s i n ( θ ) + c s i n 2 ( θ ) ) d r d θ
With respect to dr this can be easily solved by substituting r 2 = t
Integrating first integral we get :
∫ 0 2 π 2 ( a c o s 2 ( θ ) + 2 b c o s ( θ ) s i n ( θ ) + c s i n 2 ( θ ) ) 1 d θ
Which can be written as :
I = ∫ 0 π ( a c o s 2 ( θ ) + 2 b c o s ( θ ) s i n ( θ ) + c s i n 2 ( θ ) ) 1 d θ
Breaking it in parts we get :
I = ∫ 0 π / 2 ( a c o s 2 ( θ ) + 2 b c o s ( θ ) s i n ( θ ) + c s i n 2 ( θ ) ) 1 d θ + ∫ π / 2 π ( a c o s 2 ( θ ) + 2 b c o s ( θ ) s i n ( θ ) + c s i n 2 ( θ ) ) 1 d θ
Solving both integrals (as they are pretty standard and can be solved by first dividing numerator and denominator by c o s 2 ( θ ) and substituting t a n ( θ ) = t ) we get :
a c − b 2 π = I = 1
⇒ a c − b 2 = π 2