Crazy limit

Calculus Level 3

Evaluate the limit

lim x e x 2 + 1 e x \large \lim_{x\to\infty}e^{\sqrt{x^2+1}}-e^x

It aproaches a real number It approaches minus infinity It approaches plus infinity The limit is undefined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jim Chale
Jul 3, 2018

Take the function f ( x ) = e x f(x)= e^{\sqrt{x}}

At [ x 2 , x 2 + 1 ] [x^2,x^2+1] by mean value theorem we know that ξ [ x 2 , x 2 + 1 ] \exists ξ \in [x^2,x^2+1] that f ( ξ ) = f ( x 2 + 1 ) f ( x 2 ) x 2 + 1 x 2 f'(ξ)=\frac{f(x^2+1)-f(x^2)}{x^2+1-x^2} or f ( ξ ) = e x 2 + 1 e x f'(ξ)=e^{\sqrt{x^2+1}}-e^x We have : x x 2 ξ x\rightarrow \infty \Rightarrow x^2\rightarrow \infty \Rightarrow ξ\rightarrow \infty Plus, we have that f ( ξ ) = e ξ 2 ξ f'(ξ)=\frac {e^{\sqrt{ξ}}}{2\sqrt{ξ}} so, we evaluate the limit : lim ξ f ( ξ ) \lim_{ξ\to\infty} f'(ξ) and by De'l hospital rule we get : lim x e x 2 + 1 e x = + \lim_{x\to\infty} e^{\sqrt{x^2+1}}-e^x = + \infty

Leonel Castillo
Jul 6, 2018

Preliminary results: lim x x 2 + 1 x = 0 lim x x 2 + 1 + x x 2 + 1 2 x 2 = 1 \lim_{x \to \infty} \sqrt{x^2 + 1} - x = 0 \\ \lim_{x \to \infty} \frac{x^2 + 1 + x \sqrt{x^2 + 1}}{2x^2} = 1 These can be proven with basic algebraic manipulations. Keep those in mind when following the computation:

lim x e x 2 1 e x = lim x e x ( e x 2 + 1 x 1 ) = lim x e x 2 + 1 x 1 e x = \lim_{x \to \infty} e^{\sqrt{x^2 - 1}} - e^x = \\ \lim_{x \to \infty} e^x \left( e^{\sqrt{x^2 + 1} - x} - 1 \right) = \lim_{x \to \infty} \frac{e^{\sqrt{x^2 + 1} - x} - 1}{e^{-x}} = We may now use L'hopital's rule: lim x e x 2 + 1 x ( x x 2 + 1 1 ) e x = lim x e x 2 + 1 ( 1 x x 2 + 1 ) = \lim_{x \to \infty} \frac{e^{\sqrt{x^2 + 1} - x} \left( \frac{x}{\sqrt{x^2 + 1}} - 1 \right)}{-e^{-x}} = \\ \lim_{x \to \infty} e^{\sqrt{x^2 + 1}} \left( 1 - \frac{x}{\sqrt{x^2 + 1}} \right) =

A little algebra before we continue: 1 x x 2 + 1 = x 2 + 1 x x 2 + 1 = 1 x 2 + 1 ( x 2 + 1 + x ) = 1 x 2 + 1 + x x 2 + 1 1 - \frac{x}{\sqrt{x^2 + 1}} = \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}(\sqrt{x^2 + 1} + x)} = \frac{1}{x^2 + 1 + x\sqrt{x^2 + 1}} . So the previous limit equals:

lim x e x 2 + 1 x 2 + 1 + x x 2 + 1 = lim x e x 2 x 2 = \lim_{x \to \infty} \frac{e^{\sqrt{x^2 + 1}}}{x^2 + 1 + x\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{e^x}{2x^2} = \infty

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...