Crazy New Year Firework

Geometry Level 5

Michael was preparing a New Year firework at the point ( 2017 , 1 ) (2017,1) on the Cartesian plane. He accidentally fired it, such that for each n th n^\text{th} step it flied straightly to a reflected point about the line y = tan ( ( 2 n ) ) x + 2016 y = \tan\left(\left(2^n\right)^{\circ}\right) x + 2016 . The firework then exploded after 36 5 th 365^\text{th} step.

Where is the point of explosion? If your answer is ( x a , y a ) (x_a,y_a) , evaluate x a + y a \lfloor x_a + y_a\rfloor .


Image Credit: WatchMojo


The answer is 4917.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Huang
Dec 29, 2016

Notice the relationship between distance traveled and change in angle. The point will end up landing on the circumference from initial point \(P\) to final point \(P'\). Notice the relationship between distance traveled and change in angle. The point will end up landing on the circumference from initial point P P to final point P P' .


Step I. Analyzing Pattern


Before approaching the problem, consider the symmetry equation y = tan ( ( 2 n ) ) x y = \tan\left(\left(2^n\right)^{\circ}\right) x . Let P n P_n denote the initial angle with respect to the horizontal axis and D n D_n denote the reflection by the line of the equation. For each time the point is reflected, it arrives toward the point on the circumference, which does not change the displacement between the origin and the final point. Since the firework travels twice the shortest distance d d between the initial point and the line of symmetry, the change in angle is 2 D n + 1 2D_{n+1} . In that case, the resulting angle is the difference between P n P_n and 2 D n + 1 2D_{n + 1} , which is presented as the following harmonic sequence P n + 1 = P n + 2 D n + 1 P_{n + 1} = -P_n + 2D_{n + 1} for n 0 n \geq 0 . Because the line of symmetry depends on the slope tan ( ( 2 n ) ) \tan\left(\left(2^n\right)^{\circ}\right) , D n = 2 n D_n = 2^{n} , which implies that P n + 1 = P n + 2 2 n + 1 = P n + 2 n + 2 \begin{array}{rl} P_{n + 1} &= -P_n + 2 \cdot 2^{n + 1}\\ &= -P_n + 2^{n + 2} \end{array} Since the firework exploded after odd number of steps, the second step is to determine P n + ( 2 k + 1 ) P_{n + (2k + 1)} , where we treat n = 0 n = 0 and 2 k + 1 2k + 1 to be the odd number for positive integer k k . Evaluating P n + ( 2 k + 1 ) P_{n + (2k + 1)} , we have P n + ( 2 k + 1 ) = P n + 2 k + 2 D n + ( 2 k + 1 ) = ( P n 2 n + 2 + 2 n + 3 + 2 n + 2 k + 1 ) + 2 n + ( 2 k + 1 ) + 1 = P n + 2 n + 2 2 n + 3 + 2 n + 2 k + 1 + 2 n + 2 k + 2 \begin{array}{rl} P_{n + (2k + 1)} &= -P_{n + 2k} + 2D_{n + (2k + 1)}\\ &= -\left(P_n - 2^{n + 2} + 2^{n + 3} - \dots + 2^{n + 2k + 1}\right) + 2^{n + (2k + 1) + 1}\\ &= -P_n + 2^{n + 2} - 2^{n + 3} + \dots - 2^{n + 2k + 1} + 2^{n + 2k + 2} \end{array} Setting n = 0 n = 0 and 2 k + 1 = 365 2k + 1 = 365 (which implies that k = 182 k = 182 ), P 365 = P 0 + 2 2 2 3 + 2 4 2 5 + 2 365 + 2 366 = P 0 + ( 2 2 + 2 4 + + 2 364 + 2 366 ) ( 2 3 + 2 5 + + 2 363 + 2 365 ) = P 0 + 4 ( 1 + 2 2 + 2 4 + + 2 362 ) 8 ( 1 + 2 2 + 2 4 + + 2 360 + 2 362 ) + 2 366 = P 0 4 ( 1 + 2 2 + 2 4 + + 2 360 + 2 362 ) + 2 366 \begin{array}{rl} P_{365} &= -P_0 + 2^2 - 2^{3} + 2^4 - 2^5 + \dots - 2^{365} + 2^{366}\\ &= -P_0 + \left(2^2 + 2^4 + \dots + 2^{364} + 2^{366}\right) - \left(2^3 + 2^5 + \dots + 2^{363} + 2^{365}\right)\\ &= -P_0 + 4\left(1 + 2^2 + 2^4 + \cdots + 2^{362}\right) - 8\left(1 + 2^2 + 2^4 + \cdots + 2^{360} + 2^{362}\right) + 2^{366}\\ &= -P_0 - 4\left(1 + 2^2 + 2^4 + \cdots + 2^{360} + 2^{362}\right) + 2^{366} \end{array}


Step II. Modular Arithmetic


Considering the bounds of angle measurement (between 0 0^{\circ} and 36 0 360^{\circ} ), we evaluate the numerical expression in m o d 360 \bmod \, 360 . That is, we want to simplify P = ( 4 ( 1 + 2 2 + 2 4 + + 2 360 + 2 362 ) + 2 366 ) m o d 360 P = \left(-4\left(1 + 2^2 + 2^4 + \cdots + 2^{360} + 2^{362}\right) + 2^{366}\right) \bmod 360 Since 360 = 2 3 3 2 5 360 = 2^3 \cdot 3^2 \cdot 5 , evaluate P P in m o d 2 3 \bmod\,2^3 and m o d 3 2 5 \bmod\,3^2\cdot 5 separately. Clearly, P 4 ( 1 + 4 + 0 + 0 + + 0 ) + 0 m o d 2 3 20 4 m o d 2 3 \begin{array}{rl} P &\equiv -4\left(1 + 4 + 0 + 0 + \cdots + 0\right) + 0 \bmod\,2^3\\ &\equiv -20 \equiv 4 \bmod\,2^3 \end{array} For m o d 3 2 5 \bmod\,3^2 \cdot 5 , since a lcd ( φ ( 9 ) , φ ( 5 ) ) = a 12 1 m o d 3 2 5 a^{\text{lcd}(\varphi(9),\varphi(5))} = a^{12} \equiv 1 \bmod\,3^2\cdot 5 where a a is a prime factor relatively prime to 3 2 5 3^2 \cdot 5 , notice that for nonnegative integer k k 2 12 k + 2 12 k + 2 + 2 12 k + 4 + 2 12 k + 6 + 2 12 k + 8 + 2 12 k + 10 2 12 k ( 1 + 2 2 + 2 4 + + 2 10 ) m o d 3 2 5 1 + 2 2 + 2 4 + + 2 10 m o d 3 2 5 1 + 4 + 4 2 + 4 3 + 4 4 + 4 5 m o d 3 2 5 ( 1 + 4 + 4 2 ) + 4 3 ( 1 + 4 + 4 2 ) m o d 3 2 5 ( 1 + 4 3 ) ( 1 + 4 + 4 2 ) m o d 3 2 5 65 21 m o d 3 2 5 15 91 m o d 3 2 5 15 m o d 3 2 5 \begin{array}{rl} 2^{12k} + 2^{12k + 2} + 2^{12k + 4} + 2^{12k + 6} + 2^{12k + 8} + 2^{12k + 10} &\equiv 2^{12k}\left(1 + 2^2 + 2^4 + \cdots + 2^{10}\right) \bmod\,3^2\cdot 5\\ &\equiv 1 + 2^2 + 2^4 + \cdots + 2^{10} \bmod\,3^2\cdot 5\\ &\equiv 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 \bmod\,3^2\cdot 5\\ &\equiv \left(1 + 4 + 4^2\right) + 4^3\left(1 + 4 + 4^2\right) \bmod\,3^2\cdot 5\\ &\equiv \left(1 + 4^3\right)\left(1 + 4 + 4^2\right)\bmod\,3^2\cdot 5\\ &\equiv 65 \cdot 21 \bmod\,3^2\cdot 5\\ &\equiv 15 \cdot 91 \bmod\,3^2\cdot 5\\ &\equiv 15 \bmod\,3^2\cdot 5 \end{array} Since there are 6 6 consecutive terms of even exponents in the sum, there are 362 + 2 12 = 30 \left\lfloor \dfrac{362 + 2}{12}\right\rfloor = 30 sums of the same form and { 362 + 2 12 } 6 = 2 \left\{ \dfrac{362 + 2}{12}\right\} \cdot 6 = 2 extra terms left, namely 2 360 1 m o d 3 2 5 2^{360} \equiv 1 \bmod\,3^2\cdot 5 and 2 362 2 2 m o d 3 2 5 2^{362} \equiv 2^2 \bmod\,3^2\cdot 5 , 4 ( 1 + 2 2 + + 2 360 + 2 362 ) + 2 366 4 ( 30 ( 1 + 2 2 + 2 4 + 2 6 + 2 8 + 2 10 ) + 1 + 2 2 ) + 2 6 m o d 3 2 5 4 ( 30 ( 15 ) + 5 ) + 19 m o d 3 2 5 25 + 19 m o d 3 2 5 44 m o d 3 2 5 \begin{array}{rl} -4\left(1 + 2^2 + \cdots + 2^{360} + 2^{362}\right) + 2^{366} &\equiv -4\left(30\left(1 + 2^2 + 2^4 + 2^6 + 2^8 + 2^{10}\right) + 1 + 2^2\right) + 2^{6}\bmod\,3^2\cdot 5\\ &\equiv -4\left(30(15) + 5\right) + 19\bmod\,3^2\cdot 5\\ &\equiv 25 + 19 \bmod\,3^2\cdot 5\\ &\equiv 44 \bmod\,3^2\cdot 5 \end{array} So we have P 4 m o d 2 3 P 44 m o d 3 2 5 \begin{array}{rl} P &\equiv 4 \bmod\,2^3\\ P &\equiv 44 \bmod\,3^2\cdot 5 \end{array} which is easy to see that P 44 m o d 360 P \equiv 44 \bmod 360 . This shows that we evaluate P 365 = P 0 + 44 P_{365} = -P_0 + 44


Step III: Answer the Question


Because the given point is shifted by 2016 2016 units down, we have ( 2017 , 2015 ) (2017,-2015) . In polar form, r = ( 2017 ) 2 + ( 2015 ) 2 and θ = arctan ( 2015 2017 ) r = \sqrt{(2017)^2 + (-2015)^2} \quad \text{and}\quad \theta = \arctan\left( -\dfrac{2015}{2017}\right)^{\circ} Then, P 365 = ( arctan ( 2015 2017 ) + 44 ) = ( arctan ( 2015 2017 ) + 44 ) P_{365} = \left(-\arctan\left( -\dfrac{2015}{2017}\right) + 44\right)^{\circ} = \left(\arctan\left(\dfrac{2015}{2017}\right) + 44\right)^{\circ} Thus, if x a = r cos ( P 365 ) y a = r sin ( P 365 ) + 2016 \begin{array}{rl} x_a &= r\cos\left(P_{365}\right)\\ y_a &= r\sin\left(P_{365}\right) + 2016 \end{array} the answer is x a + y a = 4917 \left\lfloor x_a + y_a \right\rfloor = \boxed{4917}

Note: You can simply substitute the whole angle displacement into the expression without having to apply modular arithmetic. This still gives the same result.

Michael Mendrin
Dec 31, 2016

Happy New Years

Edit: The whole thing can be reduced to

x 365 = r C o s ( θ 365 ) x_{365}=rCos(\theta_{365})
y 365 = r S i n ( θ 365 ) + 2016 y_{365}=rSin(\theta_{365})+2016

where r = ( 2017 ) 2 + ( 2016 1 ) 2 r=\sqrt{{(2017)}^{2}+{(2016-1)}^{2}}

and n = 365 n=365 for θ 365 \theta_{365} , where

θ n = 2 π 360 ( 4 3 ( 2 n ( 1 ) n ) + ( 1 ) n 360 2 π A r c T a n ( 2016 1 0 2017 ) ) \theta_n=\dfrac{2\pi}{360} \left( \dfrac{4}{3}({2}^{n} - {(-1)}^{n})+ {(-1)}^{n} \dfrac {360}{2 \pi} ArcTan( \dfrac {2016-1}{0-2017} ) \right)

Wow! That is one neat solution you have here. :)

Happy New Year!

Michael Huang - 4 years, 5 months ago

Log in to reply

Most of the work going into this problem is coming up with that angle 44 ° 44° . But as a mental picture, consider that since we're "reflecting" the original point to image points, then even with an arbitrary number and positions of "mirrors", the final point is still going to be a linear function of the position of the original point. In this problem, it's 44 ° θ 0 44° - \theta_0 , where

44 = M o d ( 4 3 ( 2 365 ( 1 ) 365 , 360 ) 44=Mod( \dfrac{4}{3}({2}^{365} - {(-1)}^{365}, 360) .

Imagine you're looking at reflections of yourself in a maze of mirrors. When you move your hand, you see your hand moving by the same amount in your reflections, don't you?

Michael Mendrin - 4 years, 5 months ago

Log in to reply

Yes. That pretty much reminds me of the following image...

or the famous Escher drawing...

I love how diverse and versatile science is. :)

Michael Huang - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...