Crazy Numbers

Algebra Level 5

1 4 2 4 + 3 4 4 4 + 5 0 4 + 5 1 4 = ? 1^4 - 2^4 + 3^4 - 4^4 +\cdots - 50^4 + 51^4=\ ? \


This problem is inspired by many posts of similar kind.


The answer is 3515226.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Nov 23, 2015

n = 0 25 ( 2 n + 1 ) 4 n = 1 25 ( 2 n ) 4 1 4 + n = 1 25 ( 16 n 4 + 32 n 3 + 24 n 2 + 8 n + 1 ) n = 1 25 ( 16 n 4 ) 1 + 16 n = 1 25 n 4 + n = 1 25 32 n 3 + 24 n = 1 25 n 2 + 8 n = 1 25 n + n = 1 25 1 16 n = 1 25 n 4 1 + 32 ( 25 × 26 2 ) 2 + 24 25 × 26 × 51 6 + 8 25 × 26 2 + 25 = 3515226 \displaystyle \sum^{25}_{n=0}(2n+1)^4-\displaystyle \sum^{25}_{n=1}(2n)^4 \\ 1^4+\displaystyle \sum^{25}_{n=1}(16n^4+32n^3+24n^2+8n+1)-\displaystyle \sum^{25}_{n=1}(16n^4) \\ 1+\cancel{16\displaystyle \sum^{25}_{n=1}n^4}+\displaystyle \sum^{25}_{n=1}32n^3+24\displaystyle \sum^{25}_{n=1}n^2+8\displaystyle \sum^{25}_{n=1}n+\displaystyle \sum^{25}_{n=1}1-\cancel{16\displaystyle \sum^{25}_{n=1}n^4} \\ 1+32\cdot \left(\frac{25\times26}{2}\right)^2+24\cdot \frac{25\times 26 \times 51}{6}+8 \cdot \frac{25 \times 26}{2}+25=\boxed{3515226}

Moderator note:

Simple standard approach once you know how to deal with sum of powers of integers.

Exactly!!

Even your solutions inspired me to made this problem...

Dev Sharma - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...