Create extra triangles to calculate?

Geometry Level 4

Let A B R S T AB\cdots RST be a regular icosagon with 1 cm 1 \text{ cm} side , find the value of the area of E M T \triangle EMT to 3 significant figures in cm 2 \text{cm}^2 .


The answer is 12.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2017

A side of an icosogon extends 36 0 20 = 1 8 \dfrac {360^\circ}{20} = 18^\circ . Let the center of the circumcircle of the icosogon be Z Z and its radius be r r . Since there are 8 sides from E E to M M , therefore, E Z M = 1 8 × 8 = 14 4 \angle EZM = 18^\circ \times 8 = 144^\circ , 7 sides from M M and T T , M Z T = 12 6 \angle MZT = 126^\circ and E Z T = 9 0 \angle EZT = 90^\circ . Then the area of E M T \triangle EMT is:

[ E M T ] = [ E Z M ] + [ M Z T ] + [ E Z T ] = 1 2 r 2 ( sin 14 4 + sin 12 6 + sin 9 0 ) Note that r = 0.5 sin 9 = 1 2 ( 0.5 sin 9 ) 2 ( sin 14 4 + sin 12 6 + sin 9 0 ) 12.2 cm 2 \begin{aligned} [EMT] & = [EZM] + [MZT] + [EZT] \\ & = \frac 12r^2 \left(\sin 144^\circ + \sin 126^\circ + \sin 90^\circ \right) & \small \color{#3D99F6} \text{Note that }r = \frac {0.5}{\sin 9^\circ} \\ & = \frac 12 \left( \frac {0.5}{\sin 9^\circ}\right)^2 \left(\sin 144^\circ + \sin 126^\circ + \sin 90^\circ \right) \\ & \approx \boxed{12.2} \text{ cm}^2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...