One solution of the equation is .
If , , , and are all integers—not necessarily distinct—find the possible values of .
Give the sum of all of these values.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The four factors of 25 must be one of ( P , Q , R , S ) = ( 5 , 5 , − 1 , − 1 ) , ( 5 , 5 , 1 , 1 ) , ( − 5 , − 5 , 1 , 1 ) , ( − 5 , − 5 , − 1 , − 1 ) , ( 5 , − 5 , 1 , − 1 ) , ( 2 5 , 1 , 1 , 1 ) , ( 2 5 , − 1 , − 1 , 1 ) , ( − 2 5 , − 1 , 1 , 1 ) , ( − 2 5 , − 1 , − 1 , − 1 )
P + Q + R + S could be any of ( 8 , 1 2 , − 8 , − 1 2 , 0 , 2 8 , 2 4 , − 2 4 , − 2 8 )
However,
P + Q + R + S = ( 7 − a ) + ( 7 − b ) + ( 7 − c ) + ( 7 − d )
which can be rewritten as
a + b + c + d = 2 8 − ( P + R + S + T )
so
a + b + c + d could be any of ( 2 0 , 1 6 , 3 6 , 4 0 , 2 8 , 0 , 4 , 5 2 , 5 6 )
These sum to 2 5 2 .