∫ 0 π 2 x − π x sin 2 x sin ( 2 π cos x ) d x
The above integral can be expressed as B π C A where A , B and C are positive integers with A , B coprime. Find A + B + C
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
i think i should also say same pinch but too much pinches will hurt you ! haha
exactly! same pinch.
I = ∫ 0 π 2 x − π x sin 2 x sin ( 2 π cos x ) d x By: ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x = 2 1 ∫ 0 π 2 x − π x sin 2 x sin ( 2 π cos x ) + 2 ( π − x ) − π ( π − x ) sin ( 2 ( π − x ) ) sin ( 2 π cos ( π − x ) ) d x = 2 1 ∫ 0 π 2 x − π ( 2 x − π ) sin 2 x sin ( 2 π cos x ) d x = ∫ 0 π cos x sin x sin ( 2 π cos x ) d x Note: d x d cos ( 2 π cos x ) = 2 π sin x sin ( 2 π cos x ) = cos x ⋅ π 2 cos ( 2 π cos x ) ∣ ∣ ∣ ∣ 0 π + π 2 ∫ 0 π sin x cos ( 2 π cos x ) d x = 0 + π 2 ⋅ π 2 sin ( 2 π cos x ) ∣ ∣ ∣ ∣ π 0 Note: d x d sin ( 2 π cos x ) = 2 π sin x cos ( 2 π cos x ) = π 2 8
⟹ A + B + C = 8 + 1 + 2 = 1 1
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Integration Tricks
We have, I = ∫ 0 π 2 x − π x sin 2 x sin ( 2 π cos x ) d x
We are here using the property below and adding, ∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x
So, let f ( x ) = 2 x − π x sin 2 x sin ( 2 π cos x ) f ( π − x ) = 2 x − π ( x − π ) sin 2 x sin ( 2 π cos x )
Adding both, we get f ( x ) + f ( π − x ) = sin 2 x sin ( 2 π cos x )
Thus, 2 I = ∫ 0 π f ( x ) + f ( π − x ) d x = ∫ 0 π sin 2 x sin ( 2 π cos x ) d x
which is easy to integrate by taking ( x ′ = 2 π cos x ) and further applying parts. Then you get I = π 2 8
So, A = 8 , B = 1 and C = 2 and A + B + C = 1 1 .
It still seems confusing!