Diluting The Integrand

Calculus Level 4

0 π x sin 2 x sin ( π 2 cos x ) 2 x π d x \large \displaystyle \int_0^\pi \dfrac{x\sin 2x \sin\left(\frac \pi 2 \cos x\right)}{2x-\pi} \, dx

The above integral can be expressed as A B π C \dfrac{A}{B\pi^C} where A A , B B and C C are positive integers with A A , B B coprime. Find A + B + C A+B+C


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Integration Tricks

We have, I = 0 π x sin 2 x sin ( π 2 cos x ) 2 x π d x I = \displaystyle \int_0^\pi \frac{x\sin 2x \sin\left(\dfrac \pi 2 \cos x\right)}{2x-\pi}~dx

We are here using the property below and adding, 0 a f ( x ) d x = 0 a f ( a x ) d x \int_0^a f(x) ~dx = \int_0^a f(a-x)~dx

So, let f ( x ) = x sin 2 x sin ( π 2 cos x ) 2 x π f ( π x ) = ( x π ) sin 2 x sin ( π 2 cos x ) 2 x π f(x) =\dfrac{x\sin 2x \sin\left(\dfrac \pi 2 \cos x\right)}{2x-\pi}\\ f(\pi-x) =\dfrac{(x-\pi)\sin 2x \sin\left(\dfrac \pi 2 \cos x\right)}{2x-\pi}

Adding both, we get f ( x ) + f ( π x ) = sin 2 x sin ( π 2 cos x ) f(x) + f(\pi-x) = \sin 2x \sin\left(\dfrac \pi 2 \cos x\right)

Thus, 2 I = 0 π f ( x ) + f ( π x ) d x = 0 π sin 2 x sin ( π 2 cos x ) d x \begin{aligned}2I &=\int_0^\pi f(x) + f(\pi-x) ~dx\\ &= \int_0^\pi\sin 2x \sin\left(\dfrac \pi 2 \cos x\right)~dx \end{aligned}

which is easy to integrate by taking ( x = π 2 cos x ) \left(x' = \dfrac \pi2 \cos x\right) and further applying parts. Then you get I = 8 π 2 I = \dfrac{8}{\pi^2}

So, A = 8 A = 8 , B = 1 B = 1 and C = 2 C = 2 and A + B + C = 11 A+B+C = 11 .

It still seems confusing!

i think i should also say same pinch but too much pinches will hurt you ! haha

A Former Brilliant Member - 4 years, 6 months ago

Log in to reply

Haha. Haha!

Kishore S. Shenoy - 4 years, 6 months ago

exactly! same pinch.

Swagat Panda - 4 years, 10 months ago

Log in to reply

Haha. Same pinch!

Kishore S. Shenoy - 4 years, 10 months ago

I = 0 π x sin 2 x sin ( π 2 cos x ) 2 x π d x By: a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π x sin 2 x sin ( π 2 cos x ) 2 x π + ( π x ) sin ( 2 ( π x ) ) sin ( π 2 cos ( π x ) ) 2 ( π x ) π d x = 1 2 0 π ( 2 x π ) sin 2 x sin ( π 2 cos x ) 2 x π d x = 0 π cos x sin x sin ( π 2 cos x ) d x Note: d d x cos ( π 2 cos x ) = π 2 sin x sin ( π 2 cos x ) = cos x 2 π cos ( π 2 cos x ) 0 π + 2 π 0 π sin x cos ( π 2 cos x ) d x = 0 + 2 π 2 π sin ( π 2 cos x ) π 0 Note: d d x sin ( π 2 cos x ) = π 2 sin x cos ( π 2 cos x ) = 8 π 2 \begin{aligned} I & = \int_0^\pi \frac {x\sin 2x \sin \left(\frac \pi 2 \cos x\right)}{2x-\pi} dx \quad \quad \small \color{#3D99F6}{\text{By: }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^\pi \frac {x\sin 2x \sin \left(\frac \pi 2 \cos x\right)}{2x-\pi} + \frac {(\pi-x) \sin (2(\pi-x)) \sin \left(\frac \pi 2 \cos (\pi-x) \right)}{2(\pi-x)-\pi} dx \\ & = \frac 12 \int_0^\pi \frac {(2x-\pi)\sin 2x \sin \left(\frac \pi 2 \cos x\right)}{2x-\pi} dx \\ & = \int_0^\pi \cos x \color{#3D99F6}{\sin x \sin \left(\frac \pi 2 \cos x\right)} dx \quad \quad \small \color{#3D99F6}{\text{Note: }\frac d{dx} \cos \left(\frac \pi 2 \cos x\right) = \frac \pi 2 \sin x \sin \left(\frac \pi 2 \cos x\right)} \\ & = \cos x \cdot \color{#3D99F6}{\frac 2 \pi \cos \left(\frac \pi 2 \cos x\right)}\bigg|_0^\pi + \frac 2\pi \int_0^\pi \color{#D61F06}{\sin x \cos \left(\frac \pi 2 \cos x\right)} dx \\ & = 0 + \frac 2\pi \cdot \color{#D61F06}{\frac 2 \pi \sin \left(\frac \pi 2 \cos x\right)}\bigg|^0_\pi \quad \quad \small \color{#D61F06}{\text{Note: }\frac d{dx} \sin \left(\frac \pi 2 \cos x\right) = \frac \pi 2 \sin x \cos \left(\frac \pi 2 \cos x\right)} \\ & = \frac 8{\pi^2} \end{aligned}

A + B + C = 8 + 1 + 2 = 11 \implies A+B+C = 8+1+2 = \boxed{11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...