Crocodile Forest

Calculus Level 2

3 5 x x x d x = ? \large\displaystyle\int_{3}^{5} \sqrt{x\sqrt{x\sqrt{x\cdots}}} \ dx =\, ?

5 6 4 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 22, 2016

x x x = x 1 2 + 1 4 + 1 8 \huge\sqrt{x\sqrt{x\sqrt{x\cdots}}}=x^{\small{\color{#D61F06}{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\cdots}}} ( I n f i n i t e G P ) \\ (\mathcal{\color{#D61F06}{Infinite~ GP}}) = x 1 2 1 1 2 = x \\ \huge=x^{\small{\color{#D61F06}{\frac{\frac{1}{2}}{1-\frac{1}{2}}}}}=x Hence integration simplifies to:- I = 3 5 x d x \huge \mathfrak{I}=\int_{3}^{5} x \, dx = x 2 2 3 5 \huge =\dfrac{x^2}{2}|_{\small 3}^{\small 5} = 8 \huge =\color{goldenrod}{\boxed{\color{#20A900}{\boxed{\color{#007fff}{8}}}}}

pls can u explain how to get tha x in exponentials form ( as in the fiest line of ur answer)

rishabh dubey - 5 years, 2 months ago

Log in to reply

Write it as:

x × x × x \sqrt{x}\times \sqrt{\sqrt x}\times \sqrt{\sqrt{\sqrt x}}\cdots

= x 1 / 2 × x 1 / 4 × x 1 / 8 =x^{1/2}\times x^{1/4}\times x^{1/8}\cdots

= x 1 / 2 + 1 / 4 + 1 / 8 + =x^{1/2+1/4+1/8+\cdots}

Rishabh Jain - 5 years, 2 months ago

Let y = x x x \large\displaystyle\ y =\sqrt{x\sqrt{x\sqrt{x\cdots}}}

As the series is infinite, we can say that y = x y \large\displaystyle\ y = \sqrt{x*y}

which gives us y = x \large\displaystyle\ y =x [as y = 0 y=0 only for x = 0 x=0 ]

Therefore, the required integration now is: 3 5 x d x = 8 \large\displaystyle\int_{3}^{5} \ x \, dx =\, 8

Chew-Seong Cheong
May 25, 2019

Let u = x x x u = \sqrt{x \sqrt{x\sqrt{x \cdots}}} . Then

u = x u Squaring both sides u 2 = x u u = x \begin{aligned} u & = \sqrt {xu} & \small \color{#3D99F6} \text{Squaring both sides} \\ u^2 & = xu \\ u & = x \end{aligned}

Therefore, 3 5 x x x d x = 3 5 x d x = x 2 2 3 5 = 25 9 2 = 8 \displaystyle \int_3^5 \sqrt{x \sqrt{x\sqrt{x \cdots}}}\ dx = \int_3^5 x \ dx = \dfrac {x^2}2 \ \bigg|_3^5 = \dfrac {25-9}2 = \boxed 8 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...